Adaptive User Interface Approach for Efficient Transfer of Control

Simon Giovanni Engel Bachelor/ Master Seminar

Saarland Informatics Campus

March 23, 2023, Saarbrücken, Germany

Transfer of Control

• Reasons for TOC:

- Bad Vision
- Missing lane markings
- Objects blocking the ego lane

o ...

Conditional Automation

[5,6]

Transfer of Control

- Shifting responsibilities
- Fundamental for HMI in self-driving cars
- Ensures safe operation in all conditions

Transfer of Control

- Multi-modal requests reduce reaction time
- Transfer quality influenced by
 - Modality
 - Driver mental workload
 - NDRT
 - Context (weather, road type, ...)
- Metrics:
 - Take-over time
 - Take-over quality

[3]

Head-up Display

- Projects info onto transparent display
- Aviation \rightarrow Automotive

Head-up Display

- Projects info onto transparent display
- Aviation → Automotive
- Shorter reaction times
- Better vehicle control
- Danger of over-stimulation

Head-down Display

- Eyes of road \rightarrow Shared attention
- Surrounding input modalities
- Fewer design restrictions
- Insensitive to light incidence

Study Design: Overview

- Simulator
- Scenario
- Non-driving-related Tasks
- Mental Workload Measures

Study Design: Field vs Lab

- Valuable, ecologically valid data
- Higher driver motivation
- Dangerous

[11, 12, 13]

- Controlled and replicable
- Accurate, precise data collection
- Results reproducible in field study

Study Design: Simulator

[14]

Study Design: Scenario

- Rural \rightarrow urban
- Low density traffic \rightarrow High density
- No weather changes
- Take-over situations:
 - Different objects blocking ego lane

[13,22]

Study Design: NDRT

- Limited attentional resources
- Driving: Visual-manual activity
- Metrics:
 - Completion time
 - Error rate
 - ⇒ Visual Search
 - ⇒ Text Entry

0		2	
	Distractors	n	
	Mobile Game	3	
	Video	4	
	Reading	4	
	Search Task	7	
	Listening	1	
	Email	3	
	[6,13,15]		

Study Design: Workload Measures

• Impact on driver safety and experience

Study Design

- H1 There are distinct positions for different road segments that decrease the driver's reaction time
- H2 There are distinct positions for different secondary tasks that decrease the driver's reaction time
- H3 A dynamic learnable model is superior to the baseline approach when prompting TOC in terms of driver's reaction time

NDRT	Interface	Road Segment
Visual Search	HDD	urban
Text Entry	HDD	urban
Visual Search	HDD	rural
Text Entry	HDD	rural
Visual Search	HUD	urban
Text Entry	HUD	urban
Visual Search	HUD	rural
Text Entry	HUD	rual

Eye Gaze

Eye Gaze Tracking Pipeline

Right Eye Sec. C ٠٠٠٠ Gaze ***** ***** ***** · · · · · · · · · · · • • • • ۱÷۰, 14. J. Camera ٠., Left Eye **RGB** Image Facial landmark detection net Head Head pose estimation net [20,21]

Gaze estimation net

Eye Gaze Modelling

Presentation

Translate summary into Presentation

Summary

Bring knowledge into textual form

Roadmap: Future Steps

Study Preparation

Prepare questionnaires Assemble hardware Pilot study

01

OpenDS

Scene creation Autonomous driving Take-over request NDRT creation

05 03 Eye Gaze Choose algorithm

Evaluation

Effects on workload? Effects on reaction time?

Study conduct

Gather datasets Choose suitable network architecture Train model

Translate angle into AOI Model gaze as scanpath

Bibliography

- [1] Learning from experience: Familiarity with ACC and responding to a cut-in situation in automated driving; Larsson et. al
- [2] Autonomous Driving: Investigating the Feasibility of Car-Driver Handover Assistance; Marcel Walch et. al
- [3] Development of Warning Methods for Planned and Unplanned Takeover Requests in a Simulated Automated Driving Vehicle; Hong et. al
- [4] https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813309#:~:text=In%202020%20there%203%2C142.vehicle%20crashes%20inv olving%20distracted%20drivers.&text=Six%20percent%20of%20all%20drivers.the%20time%20of%20the%20crashes. (Last visit: 01.02.2023)
- [5] Automotive User Interfaces in the Age of Automation; Dagstuhl Seminar
- [6] Takeover Request Design in Automated Driving: A Systematic Review; Salubre et. al
- [7] https://www.sae.org/blog/sae-i3016-update (Last visit: 01.02.2023)
- [8] Comparison of Head-up Display (HUD) vs. Head-down Display (HDD); Liu et. al
- [9] Visual Search Task: The Effects of Head-up Displays on Driving and Task Performance
- [10] Augmented Reality vs. Street Views: A Driving Simulator Study Comparing Two Emerging Navigation Aids
- [11] Virtually the Same Experience? Learning from User Experience Evaluation of In-Vehicle Systems in VR and in the Field; Pettersson et. al
- [12] OpenDS: A new open-source driving simulator for research; Math et. al
- [13] https://trimis.ec.europa.eu/project/human-machine-interaction-and-safety-traffic-europe (Last visit: 06.02.2023)
- [14] In-Vehicle Interface Adaptation to Environment-Induced Cognitive Workload; Meiser et. al
- [15] Attention for Vision-Based Assistive and Automated Driving: A Review of Algorithms and Datasets; Kotseruba et. al
- [16] A Comparison of Rating Scale, Secondary-Task, Physiological, and Primary-Task Workload Estimation Techniques in a Simulated Flight Task Emphasizing Communications Load; Casali et. al
- [17] What's on Your Mind? A Mental and Perceptual Load Estimation Framework towards Adaptive In-Vehicle Interaction While Driving; Gomaa et. al
- [18] Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research; Hart et. al
- [19] The Construction of a Scale to Measure Perceived Effort; Zijlstra et. al
- [20] RT-GENE: Real-Time Eye Gaze Estimation in Natural Environments; Fischer et. al
- [21] Dynamics of Driver's Gaze: Explorations in Behavior Modeling and Maneuver Prediction; Martin et. al
- [22] Implementing Surrogate Safety Measures in Driving Simulator and Evaluating the Safety Effects of Simulator-Based Training on Risky Driving Behaviors; Ka et. al
- [23] The Truth About Self Driving Cars

23/03/2023 BMS Seminar, Simon Giovanni Engel

BMS Seminar, Simon Giovanni Engel

• Model gaze data as timestamp and corresponding area of interest

Time (s)	AOI
0	1
0.1	1
0.2	5
0.3	1
	4
5	3

- Regression Problem
 ⇒ Multi Layer Perceptron (MLP)
- Sequential data
 ⇒ Recurrent Neural Networks (RNN)

Critical Event	n	
Sudden pedestrian crossing	1	
Object in ego lane	9	
Curve hazard	1	
Object in opposite lane	1	
Sudden object appearing	4	
Sudden fading lane marking	3	

Distractors	n	
Mobile Game	3	
Video	4	
Reading	4	
Search Task	7	
Listening	1	
Email	3	

	-10°	-5°	0°	5°	10°	15°	20°	25°	
			1216					1271	
		1146	1192	1197					
0°	1409	1340	1089	1151	1467		2100	2527	
-5°		1333	1376	1210					
-7.5°			1527					2344	