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Retail Store

W \\/ \U/ Stocker Responsibilities:
I e Organizing product displays
I Counting Inventory

Loading product on shelves
Storing products
Maintaining cleanliness




Product Shelf

A continuously changing environment

New types of products stocked
Product organization might change
Products may be discontinued
Special limited season products



Humans Learn Continuously




Al Agent in a dynamic environment




Deep Learning

Deep CNN
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Static Learning Continual Learning

Learn once

I: Data :>

Deploy once
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Learn continually
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Naive Approach: Finetuning
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Catastrophic Forgetting

The phenomena where a model tends to forget past knowledge on account
of learning new knowledge. (McCloskey & Cohen 1989)

An illustration of catastrophic forgetting in neural networks. Cartoon credits @Jasper De Lange.



Class Incremental Learning
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Thesis Goal

Design and implement an Deep Learning model that can continuously learn new
knowledge over time.
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Architectural Strategies
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Neural Network

Deep neural network
Input layer Multiple hidden layers Output layer




Convolution Neural Network (CNN)
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Model-growth Based Approach

Pre-Training Data Neural Classifier
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Rehearsal/Replay Based Approach
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Regularization Based Approach

(a) Original Model (e) Learning without Forgetting
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Batch vs Streaming
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An Ideal Deep Learning Classification Model

In literature, this type of learning is termed as “Online Streaming Class
Incremental Learning”.

Continuously learn new classes over time

Not forget old classes

Learn a new class from a single sample

Time to learn a new class must be reasonable
Limit memory and compute




Deep-SLDA (Hayes & Kanan 2020)
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Linear Discriminant Analysis (LDA)




Proposed Design
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Principal Component Analysis (PCA)




Probability Density Estimation (PDE)
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Gaussian Naive Bayes Classifier (GNB)

Naive Bayes Model

5




Incremental Setting




Incremental Setting




Roadmap

Implementation in Python Pytorch

Benchmark: MNIST, ImageNet

Baseline: Offline mode

Experiment: iCARL, LWF, PNN, Deep-SLDA

Performance Evaluation: Average incremental accuracy




MNIST Dataset

Q~Amzxwn=
O/a/_?uU,,SG
S =MW
XV~ Mma~L
O=—9 N TS
Q~—-xmPF Ve
Q~a4mP v\
AN OGP
VIR WA T S W
ONANmTnY
ONYMNMTWVWYI
N gTwmwd
S TR R -
S—=—AMAinY
Q—"¥MILS
©O~XMJTI 9H S




ImageNet




Average Incremental Accuracy
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