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ABSTRACT

Plant breeders use field trials across locations and years to identify
superior plant varieties with traits such as disease resistance and
higher yield. However, comparing breeding candidates across loca-
tions and years is challenging and resource demanding. To address
this, we developed an integrated system that combines data acqui-
sition through a field robot with an immersive virtual reality (VR)
interface for remote assessments. The robot autonomously collects
images, spectral data and 3D scans of canola breeding trials. Our
VR application, developed through a user-centered approach, of-
fers photo-realistic 3D visualizations, enabling breeders to com-
pare candidates across locations and growth stages—capabilities
unavailable in field assessments. In a user study, five breeders con-
ducted visual trait scoring in VR to evaluate how well the system
supported typical field trial tasks. The results demonstrated con-
sistent scoring patterns among raters. Feedback from breeders in-
dicated that the ability to compare candidates across locations and
growth stages enhanced their decision making in trait assessment.
This work highlights the potential of combining robotics and VR to
transform data-intensive processes in agriculture.

Index Terms: VR in Agriculture, Immersive Visualization, Agri-
cultural Robotics, Plant Breeding.

1 INTRODUCTION

Plant breeding field trials are typically conducted across multiple
locations, each with varying environmental conditions, and must
account for temporal (seasonal or yearly) and spatial (site specific)
variations [15]. To identify potential new high-performing varieties
with sufficient statistical support, it is recommended to conduct
these trials at a minimum of 12 distinct locations over a two-year
period [35]. The collection of data from these large-scale field trials
is highly time-consuming, as trials are distributed across extensive
geographic areas. Although some private breeding organizations
have adopted electronic devices, such as tablets with dedicated soft-
ware1 that can record comments, photos, and GPS coordinates of
breeding plots [29], many public breeding organizations still rely on
manual data collection with paper and pen, followed by subsequent
transcription [28, 7]. Data collection in field trials mainly involves
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the regular visual evaluation of variety candidates by breeders. A
large number of parameters and characteristics are assessed at dif-
ferent stages of plant development through a process known as vi-
sual traits assessment or visual traits scoring. The current methods
of data collection and visual traits assessment have the following
limitations:

• collecting data is time-consuming, as field trials are replicated
across a large geographic region. It increases the likelihood of
errors, particularly because of the large number of plots.

• comparing the same breeding candidates planted at different
locations to negate environmental effects is challenging with
current methods.

• visual traits assessment in the field by plant breeders is depen-
dent on favorable weather conditions.

To address the limitations of existing data acquisition methods,
we developed an automated robotic system equipped with multi-
ple modality sensors capable of capturing data throughout all plant
growth stages. This system is supported by a mobile base station
that provides connectivity and renewable energy sources, enabling
the robot to remain in close proximity to the field. This setup fa-
cilitates more frequent data acquisition missions compared to man-
ual methods [16], significantly enhancing the temporal resolution
of collected data. Autonomous navigation in breeding fields is
achieved through a two-step mapping process: first, a UAV drone
captures aerial imagery to generate a digital layout map, which is
then processed into a detailed navigation map. The robot navigates
using this map in conjunction with onboard sensors for collision
avoidance.

To address the challenge of comparing breeding plots of the
same genotype across different locations, we developed a VR ap-
plication in collaboration with plant breeders. This application al-
lows plant breeders to perform visual trait assessments of breeding
plots remotely, regardless of their geographic location. It offers
photorealistic visualizations of 3D reconstructed data of breeding
plots within an immersive VR environment. The application allows
breeders to perform side-by-side comparisons of the breeding plots
of the same genotype planted at different locations, facilitating a
direct assessment of environmental impacts on plant features of a
genotype. Additionally, it enables breeders to observe various de-
velopmental stages of the plants throughout the growing season,
providing a more comprehensive and detailed basis for decision
making in plant breeding. The decision to use VR for data visu-
alization and interaction of breeding plots is driven by the need to
offer an immersive experience that enhances the ability of breed-
ers to accurately assess complex traits. For example, tasks such
as estimating the volume of breeding plots are challenging to per-
form accurately on traditional 2D screens. Research has shown that
the immersive nature of VR interfaces significantly improves the



user’s ability to interpret 3D data compared to similar 2D inter-
faces [34, 6, 1, 13, 8].

In particular, our contributions include the following.

• preliminary interviews with domain experts in plant science
and breeding to identify key opportunities and requirements
for multimodal data acquisition of breeding plots and data vi-
sualization in VR (see Section 3, 5);

• the design and use of an autonomous robot that continuously
monitors breeding plots by regularly acquiring GPS-localized,
multi-modal data from field trials (see Section 4);

• the iterative design of a VR application for plant breeders to
view 3D visualization of the breeding plots and do visual trait
assessment (see Section 5);

• findings from a task-oriented user evaluation focusing on real
scenario of visual scoring of traits of breeding plots using VR
app (see Section 6, 8);

• a report on limitations of visual trait assessment in VR (see
Section 9).

2 BACKGROUND

Plant breeding is a data-driven field that heavily relies on pheno-
typic data for decision-making [10]. These decisions ultimately
lead to the selection of new plant varieties with superior traits, such
as higher yield or better tolerance to diseases and abiotic stresses
such as drought. To ensure sufficient statistical support for these
selections, large-scale field trials spanning multiple years and lo-
cations are conducted, paired with extensive data collection by hu-
man experts. The traditional process of visual plant characteriza-
tion is increasingly complemented—and in some cases replaced—
by sensor-based measurements. Drones are frequently used to cap-
ture RGB, multispectral, and 3D data, as demonstrated in studies
such as [20, 38, 36]. The use of raw sensor data to support breeder
decision-making varies, from simple documentation to advanced
artificial intelligence methods that infer plant characteristics [21].
Compared to related work in plant breeding that uses drones for
data acquisition, our approach is the first to integrate an autonomous
field robot for data acquisition with a VR application, which plant
breeders can use for remote visual trait assessment.

2.1 Robotics in Agriculture
In recent years, many new robotic systems have been developed
to perform different field operations in the area of agriculture [12].
The ability to carry heavy payloads and generate high-resolution
images and sensor data is the key feature that makes field robots
advantageous [24]. These field robots vary in scale: from small-
scale robots that navigate between plant rows, to mid-scale robots
operating across multiple rows or plots, and even to large robots
capable of replacing tractors [9]. All of these systems aim to op-
erate autonomously for a specific task in the field [25]. BoniRob,
a well-discussed mid-scale autonomous field robot platform [31],
uses a top-down approach for phenotyping small or young plants.
In contrast, small-scale robots such as Robotanist [23] employ a
side-based viewpoint for observing taller plants or crops. We will
present a hybrid solution that combines top-down and side-based
viewing approaches to accommodate plants at different growth
stages.

2.2 VR in Agriculture
The use of VR or augmented reality solutions in agriculture is a
relatively new field, with limited published articles. Franzluebbers
et al. [13] proposed a VR-based application for visualization and

annotation of laser scans of plants in VR. Hurst et al. [17] con-
ducted a review of the literature related to applied augmented re-
ality solutions within agriculture. In the context of plant breed-
ing, the Avatars project 2 demonstrated VR’s potential for explor-
ing multidimensional genome datasets. Most directly relevant to
our work, Sakha et al. [32] proposed a preliminary VR prototype,
Virtual Breeding Nursery, for remote assessment of plant traits by
breeders.

3 SYSTEM REQUIREMENTS

Our initial review of the literature and interviews with experts in
plant breeding provided key insights that shaped the development
of the robot for data acquisition and VR application, as follows.

3.1 Plant breeding activity
In plant breeding, field trials are conducted using predefined rectan-
gular plots, each containing multiple plants of the same genotype.
This method allows breeders to evaluate different genotypes, with
the goal of identifying superior candidates. In the following, we
outline the workflow and summarize the challenges breeders face,
which our robot and VR prototype are designed to address.

3.1.1 Workflow
Plant breeding field trials are conducted according to the following
workflow:

• Trial setup. Before the growing season begins, the trial plots
are prepared, and seeds of different genotypes are sown in
predefined rows [11]. In our study, the field was divided into
22 x 11 plots, each plot measuring 3.8 meters in length and
containing five rows of winter canola plants.

• Visual trait assessments. Throughout the growing season,
breeders regularly visit the field to assess traits such as yield
potential, disease resistance, and growth rate. These assess-
ments, known as visual trait assessments, are performed vi-
sually and scores are assigned based on established criteria
(e.g., a scale of 1 (low production) - 9 (high production) for
yield) [2]. In our study, plant breeders evaluated traits such as
the number of plants, early vigor, development before winter,
leaf diseases, and yield parameters.

• Data collection. The breeders record the scores for each plot
and compile the data for further analysis. This data helps to
determine which genotypes perform better under the given en-
vironmental conditions.

• Final assessment. At the end of the growing season, a final
evaluation is performed to assess the overall performance of
each genotype, and decisions are made regarding which geno-
types will be advanced for further breeding.

3.1.2 Challenges
• Time-intensive data collection. Frequent field visits are re-

quired to manually gather data throughout the growing sea-
son, making the process labor-intensive and time-consuming.

• Inconsistent visual assessments across locations. In breed-
ing trials conducted at multiple locations, different individuals
typically evaluate genotypes at each site, leading to variability
in scoring due to subjective assessments.

• Tracking developmental changes. Monitoring trait changes
over time is challenging with manual methods, making it dif-
ficult to capture growth progress accurately.

• Scalability. As trials expand, relying on human data collec-
tion becomes increasingly difficult to scale.

2https://www.avatars-project.de/immersive-analytics



Figure 1: The Valdemar robot equipped with multi-modal sensors for
data capture from multiple viewpoints.

4 ROBOTIC SYSTEM FOR DATA ACQUISITION

To be able to monitor canola plants throughout the entire season,
we needed a specific robot setup with multiple views. The Valde-
mar robot, based on the Thorvald robotic platform [14], features
a four-wheel configuration with full steering capability, enabling
holonomic movement and point turning (see Figure 1). It was set
up to fit the width of the canola breeding plots and equipped with
an array of sensors. For autonomous navigation, we use a dual
RTK-GNSS solution (Advanced Navigation Certus Evo) for local-
ization, and a set of 360° Lidars (Velodyne Puck) and depth cameras
(Luxonis OAK-D PoE) are intended to be used for navigation and
collision avoidance. By combining the information of two GNSS
receivers and a magnetometer, the absolute heading of the robot is
known without using the wheel encoders.

Top-Down View. On the underside of the chassis, an array of
four stereo plus 4k cameras (Luxonis OAK-D S2 PoE) is mounted
to capture the plants while in motion. Additionally, on each of
the long sides there are stereo depth cameras (StereoLabs ZED
2i), thermal (FLIR Boson 640) and multispectral cameras (JAI FS-
3200T-10GE-NNC), and lidars (Ouster OS1-32G) to capture mul-
timodal data of the plants.

Side View. To record data from the stems of the plants and to
get a good perspective of the pods at the end of the growing sea-
son there are high-resolution cameras (Baumer VLXT-650C.I.EF)
on each long side of the robot and a high-resolution terrestrial lidar
(Z+F IMAGER 5016) on top of it. The robot has 2 Terabytes worth
of data storage capacity and a battery runtime of 3-4h of deploy-
ment depending mainly on soil conditions and surrounding temper-
ature.

4.1 Mobile base station
The base station described in the previous work [16] provides the
robot with power, connectivity, and shelter. Solar panels, a wind
turbine, and a power cable connection as a backup are used to
charge a battery. Using an inductive charging system, power is
transferred to the robot. Typically, it is deployed in the vicinity
of a field so that the robot can autonomously drive from there to the
field and return when it needs to recharge, or when the mission is
completed, as can be seen in Figure 2.

4.2 Autonomous Approach
To enable fully autonomous missions, a navigation map derived
from drone data is used. The navigation itself is executed with a set
of specific proportional controllers to cover the four default move-
ment directions. The controllers are implemented in ROS1 Noetic
within the MoveBaseFlex [27] framework. For each plot lane, a
rosbag3, which contains all sensor data in a streamline, is recorded

3http://wiki.ros.org/Bags/Format

Figure 2: General operation concept of the Valdemar robot.

and manually transferred to a central storage to provide the data for
the VR application.

5 VR APPLICATION FOR VISUAL TRAIT ASSESSMENT

We developed a VR application to enable plant breeders to conduct
visual trait assessments of breeding plots in field trials. We chose
a VR interface for its immersive capabilities, which are essential
for visualizing and interacting with 3D data, as research has shown
its advantages for tasks that require 3D analysis [13, 8]. Our ap-
plication has 2D and 3D visualizations of breeding plots, allowing
breeders to evaluate plots from different locations and across mul-
tiple growth stages. For 3D data, we reconstructed point clouds
and 3D textured meshes using high-resolution images of each plot.
Since the captured data is GPS-localized, we can precisely visualize
each plot in its spatial context. Key features of the application in-
clude side-by-side plot comparison, visualization of growth stages
over time, and multiple view modes. These enhanced capabilities
offer deeper insights into breeding field trials, which would not be
feasible through traditional field assessments. Throughout the de-
velopment process, we prioritized simplicity in the user interface
(UI) of the VR app to ensure that it did not distract users from the
assessment task, recognizing that many plant breeders in the target
group had limited experience with VR.

5.1 User-Centered Design

Given the limited experience that most plant breeders have with
VR, we adopted a user-centered design approach. We consulted
plant breeding experts throughout development, gathering feedback
from interviews and usability studies to ensure that the VR appli-
cation supported existing work practices, such as plot inspection
and visual trait assessment, while adapting these tasks to a virtual
environment.

5.2 Prototype I

The first prototype was a proof of concept to demonstrate the po-
tential of VR in visual trait assessment. It allowed users to explore
two different breeding trial locations using 3D textured meshes re-
constructed from images captured by a drone. The goal was to in-
troduce plant breeders to VR as a new tool for their assessments
and gather initial impressions.

Feedback from semi-structured interviews with three breeders
highlighted both the advantages and limitations of this early ver-
sion. Although the immersive environment was well received, users
were concerned about the lack of photorealistic detail in the visual-
izations. In addition, users suggested including an elevated view to
get a better overall perspective of environmental conditions on plots
at different locations. Another major suggestion was the integration
of plot information waypoints to display detailed information about
each plot, such as breeding database entries or 2D images.



(a) Aerial view mode. (b) Walking view mode.

(c) Plot detail view mode.

Figure 3: Three view modes in VR: (a) Aerial view of the canola breeding field, (b) Walking mode with navigation via teleportation and interactive
plot information waypoints for accessing plot data, and (c) Plot detail mode showing 3D data on a raised platform alongside 2D data display.

5.3 Prototype II
The second prototype aimed to address some of the limitations
identified in Prototype I, while introducing new features to enhance
the user experience. At this stage, we introduced two main view
modes: an aerial view mode that offered a broad overview of the
trial fields and a field-level view mode for closer inspection of indi-
vidual plots. This provided users with the ability to switch between
a high-level perspective and a more detailed view, offering flexibil-
ity depending on their assessment needs.

In this iteration, plot information waypoints were integrated
into the system. When clicked, these waypoints displayed high-
resolution images and relevant plot data, giving users immediate
access to key information. However, due to the ongoing develop-
ment of the data acquisition robot, photo-realistic data was still lim-
ited. We primarily relied on UAV drone data and side-view images
captured by a small robot equipped with 3D LiDAR, which resulted
in less detailed 3D meshes than initially desired. The breeders ap-
preciated the added aerial view and information waypoints, but re-
quested an improvement in data quality.

5.4 Prototype III
The third prototype addressed the issues identified in earlier feed-
back from plant breeders and was refined to support real visual
assessment tasks (see Figure 3). With data now available from
the new robot (see Section 4), we integrated photorealistic GPS-
localized data and introduced the new “plot detail” mode for de-
tailed plot inspection. In addition, we improved the UI of the aerial
and walking modes to make them more intuitive.

5.4.1 Multiple View Modes
We implemented three display modes in our VR application—aerial
mode, walking mode, and plot-detail mode—based on feedback
from plant breeders. These modes provide different perspectives
and levels of detail to enhance data interpretation. Users can seam-
lessly switch between these modes via the main menu in the UI.

The aerial mode gives a bird’s-eye view of the entire breeding
field. The field is visualized as a 3D textured mesh from a top-
down perspective. This mode allows users to get an overview of the
trial, and observe how environmental factors at different locations
affect breeding candidates. An example of this view is shown in
Figure 3a.

The walking mode simulates the in-field experience, allowing
users to virtually walk through the breeding field using teleporta-
tion. In this mode, users can inspect the plots up close, interact
with them by clicking on plot information waypoints, conduct vi-
sual evaluations, and assign ratings to the plots. This interactive
functionality mirrors how breeders assess plots during actual field
trials, but in a virtual, immersive environment. An illustration of
this mode is shown in Figure 3b.

The plot detail mode offers the most in-depth analysis, focusing
on one plot at a time. This mode allows users to seamlessly browse
through plots by pressing a button on the VR controller. Users can
view visualizations of a plot across different growth stages. In addi-
tion, users can compare the current plot with other plots. This fea-
ture is especially valuable for comparing replicated trials, where the
same breeding candidates are evaluated in diverse environments.
The mode also displays important metadata, such as moisture lev-
els and other plot-specific information, on a 2D screen. An example
of this mode, featuring both 3D and 2D visualizations, is shown in
Figure 3c.

5.4.2 Plot Comparison

Plot comparison is one of the key features of our VR app, enabling
side-by-side comparisons of breeding plots from different or the
same locations. During initial interviews, breeders expressed a need
to compare plots across locations during visual assessments, a task
that is either difficult or impossible with current field-based meth-
ods. The data is captured by the robot at various trial locations, and
the VR app brings these data together, allowing direct comparisons.
It can help breeders assess how the same breeding candidates per-



(a) Task 1: Visual trait assessment in VR. (b) Task 2: Visual trait assessment with plot comparison.

(c) Task 3: Visual trait assessment with plot history.

Figure 4: (a) In Task 1, users view a single plot and assign a score to a given trait. (b) In Task 2, users view two plots and rate the left plot using
the right plot for comparison. (c) In Task 3, users view three developmental stages of the same plot and rate the latest stage, using the earlier
stages for temporal context.

form under diverse environmental conditions throughout the grow-
ing season.

5.4.3 Plot History
Plot history enables users to view the development of individual
plots over time, providing visualizations for multiple stages of crop
growth. This feature helps breeders track the progression of traits
from early growth to later stages, aiding in the analysis of how
breeding candidates perform at each stage. By displaying historical
data within the VR environment, users can compare the plot perfor-
mance across different time points, allowing a more comprehensive
assessment of plant development.

5.4.4 Plot Information Waypoints
Interactive plot information waypoints provide quick access to de-
tailed plot information, including images and data from the breed-
ing database. In walking mode, these interactive elements are
displayed above each plot, becoming visible when the user ap-
proaches. Upon interaction, they trigger a 2D user interface panel
that contains metadata from the database and plot images, as can be
seen in Figure 3b.

5.4.5 Plot Rating
This feature allows plant breeders to perform visual trait assess-
ments (see Section 3) and assign ratings to plots within the VR app
on a scale of 1 to 9. The assigned ratings are automatically saved to
the database.

6 USER STUDY

The study was reviewed and approved by the Ethical Review Board
of the Department of Computer Science of Saarland University,
which determined there were no ethical concerns regarding the im-
plementation of this research project. In our user study, we per-
formed a task-based evaluation to determine how effectively our
VR prototype supports the visual trait assessment process within

plant breeder workflows (see Section 3.1.1). Rather than focusing
only on individual UI components, we evaluated how well the pro-
totype facilitates tasks that breeders typically perform during field
trials, but in a virtual environment. We gathered quantitative data on
task performance along with user feedback, providing insights into
the system’s performance and identifying areas for improvement.

6.1 Participants

We conducted our study with five female participants, all profes-
sionals in plant breeding, with varying levels of experience in visual
trait assessment of canola. Their ages ranged from 23 to 56 years
(M = 33.6, SD = 11.59), and their professional experience ranged
from less than a year to more than seven years. Their skills in vi-
sual trait assessment ranged from novice to advanced, and only one
participant had previous experience with VR. The participants were
affiliated with NPZ Innovation GmbH and voluntarily participated
during their work hours to contribute to improving a VR application
for future integration into plant breeding workflows, without addi-
tional compensation. To avoid confusion with the plots, which we
denote as P1, P2, and so on, we refer to the participants as “users”:
U1, U2, and so on.

6.2 Procedure

The users were first informed about the overall study and asked to
complete a consent and demographic form. After agreeing to par-
ticipate, they were introduced to the three visual trait assessment
tasks, described in Section 6.4. They were also familiarized with
the VR environment and controller options and given time to ex-
plore the VR application before beginning the tasks.

After each task, users filled out a questionnaire to provide feed-
back on their experience and preferences. A semi-structured inter-
view followed to gather additional subjective insights. To simulate
field conditions, users stood while performing the tasks, and breaks
were provided between tasks to minimize fatigue.



6.3 Apparatus
We used the HTC Vive Pro headset with controllers to evaluate our
VR prototype, which was developed in Unreal Engine. The ap-
plication ran on a desktop PC equipped with an NVIDIA GeForce
RTX 3080 graphics card. To capture user interactions and verbal
feedback, we recorded screen activity and audio throughout the ses-
sions.

6.4 Tasks
Users evaluated breeding plots in VR through three tasks, each test-
ing different methods of visual trait assessment. For each task, they
assigned a score from 1 to 9, with 9 representing the highest rating.

6.4.1 Task 1: VR assessment of individual plot
Users viewed one plot at a time, displayed as a 2D image and a
3D point cloud, as seen in Figure 4a. They assigned a score based
solely on the visual information presented. A total of 10 randomly
selected plots were evaluated. This task aimed to assess how effec-
tively users could perform trait assessments in the VR environment.

In this task, users were asked to evaluate the trait development
before winter. This trait refers to the biomass development of plants
before the onset of winter. The trait was rated on a scale from 1 to 9,
with 1 representing little biomass and few leaves, and 9 indicating
substantial biomass and many leaves.

6.4.2 Task 2: VR assessment with plot comparison
Users compared two plots side-by-side in VR, using 2D and 3D
visualizations, as seen in Figure 4b. The left plot remained fixed,
while users could change the right plot from a selection of available
plots to provide context for comparison. They then scored the plot
on the left, considering the visual differences between the two. This
task aimed to explore whether breeders found it helpful to have
comparison plots. In this task, the users assessed the same trait as
in Task 1, development before winter.

6.4.3 Task 3: VR assessment with plot history
Users viewed a plot’s development over three different growth
stages based on 3D point cloud visualizations, as seen in Figure 4c.
They scored the latest stage while considering the earlier develop-
mental stages. This task aimed to explore whether breeders found
it helpful to have the temporal context of a plot’s previous growth
history when conducting assessments. In this task, users assessed
the trait development after winter. This trait reflects the ability of
the plant to survive winter conditions and quickly resume growth in
spring.

6.5 Exploratory Phase: Evaluation of System Usability
In the final exploratory phase, users evaluated the complete VR pro-
totype with all features, including multiple view modes (see Sec-
tion 5.4). There were no specific tasks or time limits during this
phase; users were free to explore the system at their own pace. Af-
terward, they completed a positive version of the System Usability
Scale (SUS) questionnaire, designed to reduce cognitive load and
collect reliable feedback on ease of use [33].

7 RESULTS

In this section, we present the results of our study, organized by the
three tasks outlined in the user study. We present both quantitative
results, focusing on the performance data, and subjective results,
capturing users’ feedback and insights gathered from the post-task
questionnaires and semi-structured interviews.

7.1 Task 1
In Task 1, five users conducted visual trait assessment of 10 breed-
ing plots in VR and assigned scores using a 1-9 scale.

Table 1: Visual trait assessment scores for Task 1

Plot ID User Scores Mean SDU1 U2 U3 U4 U5
P1 8 7 7 7 5 6.8 0.98
P2 6 5 6 5 4 5.2 0.75
P3 5 6 8 8 6 6.6 1.20
P4 6 5 7 6 5 5.8 0.75
P5 5 6 5 6 6 5.6 0.49
P6 4 4 4 4 3 3.8 0.40
P7 8 9 9 9 8 8.6 0.49
P8 5 3 3 5 3 3.8 0.98
P9 5 6 6 6 5 5.6 0.49
P10 6 7 7 6 6 6.4 0.49

Low score (1-4) Medium score (5-6) High score (7-9)

(a) Plot 7, Mean score: 8.6.

(b) Plot 6. Mean score: 3.8.

Figure 5: Images of the highest and the lowest rated plots in Task 1.
(a) Highest-rated plot 7, (b) Lowest-rated plot 6.

7.1.1 Quantitative Results
VR Assessment Scores. The scores assigned by the users to each
plot are summarized in Table 1. Plot 7 consistently received the
highest score (M = 8.6), followed by Plot 1 (M = 6.8), suggesting
that users found that these plots exhibit a superior trait. In contrast,
Plots 6 and 8 received the lowest mean scores (M = 3.8), indicat-
ing that these plots were perceived to have the poorest performance
in traits. These assessments align with the visual representations
provided in Figure 5, which shows the images of the plots that re-
ceived the highest and lowest average scores. Figure 6 illustrates
the trend of individual user scores, with the graph showing align-
ment in user ratings across different plots, pointing to consistency
in trait assessment.

VR vs. Field Assessment. To assess the reliability of visual as-
sessments in VR, we compared the mean VR scores of the users
with the available field assessment data from a single breeder (see
Figure 7). For five of nine plots, VR scores closely matched field
scores, showing less than a 1-point difference. Due to the unavail-
ability of field data for Plot 8, it could not be compared. Since
field data came from only one breeder and were compared to the
average VR scores of five users, we cannot statistically confirm the
alignment between the two methods.

Inter-Annotator Agreement: We evaluated the reliability of VR
assessment scores using the Within-Group Agreement (rWG) [18].
It offers a plot-specific measure of agreement, allowing us to assess
consistency among the raters for each individual breeding plot. This
enables the identification of any specific plots with lower agree-
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Figure 6: Trend analysis of visual trait assessment scores in VR,
showing individual scoring patterns for each user.
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VR versus Field assessment scores

VR scores Mean VR score Field score

Plot ID P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
VR 6.8 5.2 6.6 5.8 5.6 3.8 8.6 3.8 5.6 6.4
Field 7 5 6 4 6 4 7 - 7 4

Figure 7: Comparison of VR and field assessment scores. Plots with
score differences less than 1 point are highlighted in blue in the table
below.

ment.
Table 2 shows the rWG scores alongside the mean ratings for

each plot. The mean rWG score (0.895) and median rWG score
(0.925, range: 0.730 to 0.970) were well above the 0.70 benchmark
for strong agreement [19], reinforcing consistency in the scoring
between users.

VR Assessment Efficiency. We measured the time it took users
to assess each plot. To ensure more accurate measurements, we
excluded the time spent on the first plot, as users were still familiar-
izing themselves with the VR environment, which typically made
the first assessment longer. The results revealed a significant range
in assessment speed. The fastest user (U3) took an average of 5
seconds per plot, while the slowest (U1) averaged 37 seconds (see
Figure 8). Across all users, the mean assessment time was 18 sec-
onds per plot.

7.1.2 Subjective Results

To complement our quantitative findings, we collected subjective
feedback through post-study questionnaires focusing on users’ per-
ceptions of the trait assessment in VR. The questionnaire addressed
three key aspects: perceived accuracy, perceived speed of assess-
ment compared to field-based methods, and the usefulness of 3D
data visualization.

Table 2: Within-Group Agreement (rWG) Scores and Mean Scores
for plots in Task 1.

Plot ID P1 P2 P3 P4 P5
rWG 0.820 0.895 0.730 0.895 0.955
Mean Score 6.80 5.20 6.60 5.80 5.60

Plot ID P6 P7 P8 P9 P10 Mean
rWG 0.970 0.955 0.820 0.955 0.955 0.895
Mean Score 3.80 8.60 3.80 5.60 6.40 5.82

Users

Time (s)

0

10

20

30

40 0:37

U1

0:13

U2

0:05

U3

0:07

U4

0:28

U5

0:18

Mean of all users

Figure 8: Average time per plot taken by users for Task 1.

Perceived Accuracy: When asked about the perceived accuracy
of the VR-based assessment compared to the field-based method,
the responses were mixed but generally positive. Three users rated
the VR-based method as equally accurate as the field-based ap-
proach, while two perceived it as slightly less accurate (Q1 in Fig-
ure 9).

Perceived Speed: Users were also asked to compare the effi-
ciency of VR-based assessment with field assessment. Two users
indicated that the VR-based assessment was slightly faster than the
field-based method (Q2 in Figure 9). Two others found the speed to
be comparable to the field-based method, while one user perceived
the VR-based method to be slightly slower.

3D Data Visualization. Given that we provided 2D (images) and
3D (point clouds) visualizations, we sought to understand the value
of 3D data for breeders during assessments. Users generally found
the 3D data visualization useful. One user rated it as very helpful,
three as helpful, and one as neither helpful nor unhelpful (Q3 in
Figure 9).

7.2 Task 2
In Task 2, users performed visual trait assessments in VR with the
option to compare the plot they were evaluating against any avail-
able plot. This task allowed us to examine user preferences and
assess how helpful the comparison feature was in the assessments.
In the post-task questionnaire, we asked users which method they
preferred. Three out of five users favored the side-by-side plot com-
parison offered in Task 2, while the other two preferred evaluating
a single plot, as in Task 1. When asked whether the plot compar-
ison feature aided their decision-making in trait assessment, one
user rated it as significantly improved, three rated it as improved,
and one was neutral (Q4 in Figure 10).

7.3 Task 3
In Task 3, users evaluated breeding plots using the ”plot history”
feature, which allowed them to view and assess the development of
a plot across three different growth stages in VR. After completion
of the task, we asked users if they agreed with the statement that the
plot history aided their decision-making during visual trait assess-
ment. The responses were generally positive, but varied: two users
agreed with the statement, two somewhat agreed, and one user re-
mained neutral, neither agreeing nor disagreeing (Q5 in Figure 11).



Q1. Were VR assessments as accurate as field?

Likert scale
1: Much less accurate, 2: Less accurate, 3: Slightly less accurate, 4:
About the same, 5: Slightly more accurate, 6: More accurate, 7: Much
more accurate.

Q2. Were VR assessments as quick as field?

Likert scale
1: Much slower, 2: Slower, 3: Slightly slower, 4: About the same, 5:
Slightly quicker, 6: Quicker, 7: Much quicker.

Q3. How helpful was 3D visualization?

Likert scale
1: Extremely unhelpful, 2: Very unhelpful, 3: Unhelpful, 4: Neither
helpful nor unhelpful, 5: Helpful, 6: Very helpful, 7: Extremely helpful.

Figure 9: Post-task questionnaire responses following Task 1.

Q4. Did plot comparison aid your decision-making in the VR as-
sessment?

Likert scale
1: Significantly worsened, 2: Worsensed, 3: Slightly worsened, 4: Neither
improved nor worsened, 5: Improved, 6: Significantly improved, 7:
Greatly improved.

Figure 10: Post-task questionnaire responses following Task 2.

Q5. The plot history aided my decision making in the VR
assessment.

Likert scale
1: Strongly disagree, 2: Disagree, 3: Somewhat disagree, 4: Neither agree
nor disagree, 5: Somewhat agree, 6: Agree, 7: Strongly agree.

Figure 11: Post-task questionnaire responses following Task 3.

Table 3: System Usability Scores for the VR application

Statement U1 U2 U3 U4 U5
1. I would like to use the VR app frequently. 4 4 4 3 4
2. I found VR app to be simple. 4 4 4 4 4
3. I thought VR app was easy to use. 5 4 4 4 4
4. I could use VR app without technical support. 4 2 4 2 2
5. VR app functions were well integrated. 4 3 4 4 4
6. There was consistency in the VR app. 5 4 4 3 3
7. Most people would learn to use VR app quickly. 4 3 3 5 4
8. I found VR app very intuitive. 5 4 3 4 4
9. I felt confident using the VR app. 5 3 4 4 4
10. I could use VR app without learning 5 2 3 4 3
anything new.
SUS Score 87.5 57.5 67.5 67.5 65.0
Average SUS Score 69.0 (Above Average)
Scale: 1: Strongly disagree, 2: Disagree, 3: Neutral, 4: Agree, 5: Strongly agree

Low score: 1-2 Medium score: 3 High score: 4-5

7.4 System Usability Assessment
The SUS evaluation revealed scores ranging from 57.5 to 87.5, with
a mean score of 69 (SD = 11.12), as seen in Table 3. According to
established benchmarks, scores above 68 indicate high usability [3],
placing our VR prototype in the ‘Above Average’ category. Three
users gave low ratings (2 out of 5) when asked if they “could use
the VR app without the support of a technical person.” In particular,
all participants, except one, were first-time VR users, which likely
influenced their confidence in using the system independently.

8 DISCUSSION

The results of our studies indicate both opportunities and challenges
of VR for performing visual traits assessment, as follows:

VR offers potential for reliable and efficient trait assessment.
Our evaluation demonstrated that VR can be a promising tool for
consistent and reliable visual trait assessment. The ratings across
different plots in Task 1 were mostly consistent, indicating that trait
assessment in the VR environment is reliable. This is further sup-
ported by high inter-annotator agreement scores, suggesting that the
traits presented in VR were observable, enabling multiple breeders
to make comparable assessments.

In terms of efficiency, users took an average of 18 seconds per
plot, with times ranging from 5 to 37 seconds. This variability re-
flects how quickly different users adapted to the VR environment
and how much time they spent evaluating the plots. Since users
were not required to prioritize speed, some took extra time to fa-
miliarize themselves with the interface. In particular, U3, who com-
pleted the assessments in 5 seconds per plot, had prior VR experi-
ence, while U1, who took 37 seconds per plot, noted: “As I have
never used VR, I think I am slower, but if I get used to it, it would be
as fast as the field assessment.” This suggests that VR familiarity
may significantly impact the speed of the assessment and could be
improved through training.

Subjective insights highlighted both the strengths and limitations
of the VR experience. Users generally appreciated the realistic vi-
sual representations, but certain areas for improvement were also
noted. For example, a breeder commented, “It would be better to
have a complete plot (visualization).” This feedback points to lim-
itations in autonomous data acquisition, particularly in obtaining
accurate and complete 3D reconstructions of entire 3.8 m plots. To
ensure consistency in the VR environment, we presented users with
visualizations of partial plot areas rather than full-length plots. De-
spite this, users were able to make consistent assessments.

VR versus field assessments. We found a close alignment be-
tween VR and field assessment scores, although this comparison
was limited to data from a single breeder (see Figure 7). Although
this consistency between VR and field scores is encouraging, it



is not sufficient to establish statistical significance. In subjective
feedback, three out of five users rated the VR-based method as
equally accurate to the field-based approach, while two perceived it
as slightly less accurate. One potential reason for the varied percep-
tions of accuracy could be the lack of tactile feedback (the ability to
physically inspect plant leaves and stems for texture or subtle dam-
age) in VR, which some users noted as crucial when assessing later
growth stages. In terms of efficiency, users generally perceived VR
assessments to be as fast or slightly faster than field assessments.
One user noted that VR was faster because it eliminated the need to
go into the field and physically walk between plots.

VR-enhanced capabilities. We integrated two advanced fea-
tures into our VR system, which are unavailable in traditional field
assessments. Task 2 enabled users to compare one plot with another
in the same or a different field, while task 3 allowed users to view
past developmental stages of a plot during its evaluation. Our ob-
jective was to determine whether these features provided practical
benefits for plant breeders during assessments.

Users gave mixed feedback on the plot comparison feature. One
user noted that while comparisons were interesting, they preferred
to focus on the plot they were actively evaluating, indicating that
additional context could distract. Another breeder proposed that
showing both a good and bad plot for reference could enhance de-
cision making, suggesting that benchmark plots may help provide
clearer comparisons.

Feedback on the plot history feature in Task 3 was generally
positive. User 3 highlighted the benefit of tracking developmen-
tal changes over time, noting that “Being able to visualize earlier
growth stages is really helpful, especially if there are significant
changes over time.” This comment and the feedback about this fea-
ture (see Figure 11) suggest that the ability to visualize a plot’s pro-
gression across time is useful, offering insights that are often hard
to capture in the field, where such temporal context is not available.

VR can be used as a training aid for new plant breeders.
Users recognized the potential of VR to train new plant breeders.
User 1 pointed out that VR can be used to demonstrate how to per-
form visual trait assessments, stating: “you can show them how to
rate the plots. On the field, every year is different, sometimes you
have (plant) diseases, sometimes not.” This highlights how VR can
offer a standardized training environment that field conditions, with
their yearly variability, cannot. U2 and U3 also saw its value, and
U3 emphasized that it could supplement traditional field training
by providing consistent and repeatable scenarios for learners. VR
is especially useful in agricultural domains, where training oppor-
tunities are often constrained by seasonal factors.

9 LIMITATIONS

Due to the specialized nature of plant breeding and the prac-
tical challenges of working with domain experts, our study in-
cluded a limited number of plant breeders. Although this sam-
ple size is typical for HCI research involving expert users (e.g.,
[26, 37, 30, 22, 4, 5]), the small pool of participants may limit
the broader applicability of our findings. As part of the evaluation,
we compared the mean assessment scores of five breeders in VR
with the corresponding field scores of one breeder across nine plots.
However, statistical analysis was constrained by the methodological
limitation of comparing mean scores with individual ratings and the
small sample size. Furthermore, comparative analyses between 2D
image-only and 3D point cloud-only visualizations, which could
more effectively quantify the efficacy of VR-based visualization for
visual trait assessment, were beyond the scope of this study.

One technical limitation was inherent to the VR hardware, in-
cluding a limited field of view and the weight of the device. Addi-
tionally, our prototype focused on visual trait assessment at specific
growth stages, particularly lacking coverage of later developmental
phases, such as pre-harvest. These later stages are crucial for eval-

uating traits such as yield, which significantly influence breeding
decisions. This limitation arose from constraints in data collection
with our robotic system. The increased plant height during later
growth stages necessitated adjustments to the robot’s navigation al-
gorithm and sensor placements—modifications that could only be
implemented in subsequent growing seasons due to the seasonal
nature of field trials.

10 CONCLUSION

In this study, we explore the use of VR as a tool for visual trait as-
sessment in plant breeding, investigating how immersive technol-
ogy can improve traditional agricultural workflows. Our VR pro-
totype offers capabilities not possible with current methods, such
as visualizing plant development over time and comparing breed-
ing plots across various locations. Task-based evaluation suggests
that breeders can perform reliable visual assessments of plant traits
in VR. However, some limitations remain, including technical lim-
itations of VR hardware and reduced data quality at later develop-
mental stages. Moving forward, we plan to continue to collaborate
with plant breeders to improve both the data acquisition process
and the VR prototype. Our goal is to integrate these systems with
existing breeding tools and use data from VR assessments to train
machine learning models. Overall, our findings show that combin-
ing autonomous data collection with immersive VR environment
can effectively complement traditional field assessments, offering
new opportunities for remote, data-driven decision making in plant
breeding. This work highlights the potential of robotics and VR in
agriculture, offering valuable insights for designing immersive sys-
tems in other data-intensive domains. It represents the first practical
application of combining these technologies in plant breeding, and
more broadly in agriculture.
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