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Abstract
While it has been well established that incorporating land-
marks into route descriptions enhances understanding and
performance of wayfinding, only a very few available sys-
tems make use of them. This is primarily due to the fact
that landmark data is often not available, and the creation
of the data is connected to tedious manual labor. Prior work
explored crowd-sourced approaches to collect landmark
data, but most of that work focused on explicit user input to
gather the data. In this paper, we presented our work to-
wards a system to automatically infer suitable landmarks for
pedestrian navigation instructions from mobile eye-tracking
data. By matching the video feed of the scene camera of a
head-mounted eye tracker to Google Street View imagery,
our system is able to cluster the visual attention of the users
and extract suitable landmarks from it. We present early
results of a field study conducted with six participants to
highlight the potential of our approach.
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Introduction
Navigating in partially familiar or completely unfamiliar envi-
ronments is a complex task that requires spatial reasoning,
memorization, and close examination of the surroundings.
While turn-by-turn navigation can help in this process, its
generic route descriptions, dependence on positional ac-
curacy, existing experiences, and wrong human distance
estimations can mislead users [2].

Incorporating landmarks – geographic objects that help
structuring human mental representations of space [20,
13] – in the route description has been proven to enhance
understanding and performance of wayfinding [3, 23]. May
et al. found that landmarks, namely pubs, specific shops,
restaurants, supermarkets, petrol stations, traffic lights and
parks should be the primary means of providing directions
to pedestrians [14]. Even using more specialized You-Are-
Here maps that often contain such landmarks can support
the process, compared to the one-size-fits-all approach of
current online map providers [12, 21].

Even though these advantages are well known, very few
commercial systems exist that include landmarks in the
description process. The primary reason for that is the lack
of available landmark data [3]. The main reason for this is,
that the process of acquiring such data is very costly and
often connected to manual labour, e.g. for detecting direct
visibility of tall buildings from an intersection. Wakamiya et
al. relied on a 3D geographic model of the city [24]. The
thresholds for their proposed algorithm were determined
by examining the actual visibility of a landmark in Google
Street View.

To overcome the need for manual acquisition of landmark
data, a variety of different approaches have been explored.
Crowd-sourcing in particular has been proven to be a prac-
tical approach. Wolfensberger and Richter developed a

mobile application that allows one to label objects in the en-
vironment as landmarks in-situ [26]. Helgath et al. extended
this approach to a smartwatch application that was control-
lable via speech input [5] to lower the complexity of the in-
teraction. Introducing gamification as a means of motivation
for the crowd has been explored as well [1], and adapted to
in-car applications for passengers [11].

But all of these approaches require active user input and
only a few automatic selection techniques exist that corre-
spond well enough with the human concept of landmarks [16]
so far. Furthermore, the selection of landmarks is biased,
when using a specific source such as social networks,
or restricted by the available data for certain characteris-
tics of objects, and they cannot be chosen freely based
on their saliency. One possibility to overcome this need
is to use eye tracking. In the area of geographic explo-
ration, eye-tracking has been employed successfully before,
i.e., to identify factors that influence the duration of the vi-
sual exploration of a city panorama [7]. Furthermore, eye
tracking has been used to understand the process of self-
localization with a map [8] and Giannopoulos et al. even
developed a navigation system that incorporates the user’s
gaze at decision points to communicate the route [4]. This
prior work makes eye tracking a promising approach to au-
tomatically identify landmarks as well. Since landmarks
are normally characterized by a high visual saliency, they
should attract the visual attention of the user [18, 25].

In this paper, we presented our work towards a system to
automatically infer suited landmarks for pedestrian naviga-
tion instructions from mobile eye-tracking data. By matching
the video feed of the eye tracker’s scene camera to Google
Street View imagery, our system is able to cluster the visual
attention of the users on specific elements of the environ-
ment. From this aggregation, we can infer the saliency of
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the environmental elements and the potential for use as
landmarks for navigational instructions. Besides our current
implementation, we present the early results of a field study
with six participants.

Enabling Automatic Landmark Extraction

Figure 1: Eye tracking prototype
extended with sunglasses and a
wireless inertial measurement unit
to detect the head orientation.

Sorrows and Hirtle distinguish between three kinds of land-
marks: visual, semantic and structural landmarks [22]. Vi-
sual landmarks are salient due to their visual prominence,
semantic landmarks due their historical or functional impor-
tance. Structural landmarks are characterized by the impor-
tance of their role in the environment. In this work we focus
on extracting visual landmarks using eye-tracking data. By
using natural gaze patterns of pedestrians, we want to over-
come the need for manual input when crowd-sourcing land-
mark data. Due to the visual saliency of the landmarks, the
users implicitly will focus more visual attention on them [25].
The described method refers to the visual attraction as a
measure for the attractiveness of landmarks in the formal
model of landmark saliency by Raubal and Winter [19].

The automatic extraction of visual landmarks based on a
person’s viewing and gazing behavior faces two key chal-
lenges. First of all, we have to continuously record a per-
son’s location, head orientation and gaze data. All the data
have to be synchronized to accurately calculate the user’s
attention. Secondly, we have to map the user’s visual atten-
tion onto the environment in an automated fashion. Espe-
cially the latter used to be problematic in the past due to the
lack of holistic imagery of the environment. In our approach,
we combine the recorded data with information gathered
through Google Maps and Street View APIs 1.

Specifically, we correlate the user’s GPS location and head
orientation together with the eye tracker’s scene camera

1https://developers.google.com/maps

video stream based on the recorded timestamps. The lo-
cation data was captured through an iPhone SE that was
manually synchronized by capturing a start-button press
on the phone’s screen with the scene camera. The lo-
cation and head orientation data is used to get potential
candidates the user’s current field of view. This is done by
querying Google Street View image data representing the
current environment. To finally map the user’s gaze onto
the surrounding area, we make use of GazeProjector [9].
While this system was originally used to map the gaze point
of a user on public displays, we adapted the approach to
map the gaze on Google Street View imagery. More pre-
cisely, the eye tracker’s scene camera image is used as a
template that is searched for in the corresponding Google
Street View image. Therefore, we re-implemented the fea-
ture tracking algorithm of GazeProjector. If the template
matches, the software calculates a transformation matrix
(i.e., a homography). This matrix represents the transfor-
mation from the recorded field of view image into the Street
View image, retrieved from the API. Hence, the gaze point
is transformed onto the Street View imagery, which after
clustering the attention, can be used to identify the set of
visually most attractive landmarks.

Hardware
To realize this, we developed a hardware prototype, that
bundles different devices into a wearable solution to record
all needed data at once. Figure 1 depicts the implementa-
tion of the device. It consists of the following components:
(1) a head-mounted Pupil Labs eye tracker 2, (2) a 9 DOF
IMU mounted on the eye tracker3, (3) a device to record
GPS location and (4) a laptop (MacBook Pro 13 inch) driv-

2http://pupil-labs.com/pupil/
3Sparkfun 9DOF sensor stick with ADXL345 Accelerometer,

HMC5883L 3-axis magnetometer, and ITG-3200 gyroscope with the AHRS
firmware
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ing Pupil Labs software. In total, four data streams are
recorded: the eye tracker’s scene camera stream, the user’s
gaze data and the user’s head orientation are streamed to
a laptop. For collecting GPS locations, an iPhone SE was
used.

The mounted IMU is able to measure the user’s absolute
head orientation as yaw, pitch, and roll independently of
the eye-tracking device. We used an RFDuino4, to con-
nect the IMU via Bluetooth LE to the MacBook. The way
we mounted the sensor breakout shield ensured that the
X axis was pointing forward, the Y axis pointing to the right
and Z axis pointing down with respect to the viewing direc-
tion. The sensors were mounted on the left earpiece of the
headset, where clearance to other cables and the cameras
was sufficient in terms of magnetometer deviation. We took
special care of the compass calibration to compensate for
hard and soft iron errors. We experienced deviations from
magnetic north due to electromagnetic induction when the
eye-tracking system was running. Figure 2 visualizes the
resulting compass calibration which we created with the
complete setup switched on.

Figure 2: Matlab visualization of
the 3-axes compass deviation table
created with the AHRS firmware

Software
As we use a Pupil Labs eye tracker to record a person’s
field of view and gaze data, we also use the Pupil Labs
framework [6] to analyze the recorded data. This software
is developed in Python and easily extensible through plug-
ins. We extended its so-called Pupil Player5, used to play
back recorded data, by the following features: (1) Automatic
correlation and playback of all recorded data. This is done
by simply dragging&dropping a folder that contains the files
recorded by the Pupil Labs software, a GPX track of the
route walked, and a CSV file containing the head orienta-

4http://www.rfduino.com/
5https://pupil-labs.com/blog/2014-02/pupil-player-release/

tions, onto the UI; (2) highlighting the current location of
the user on Google Static Maps; (3) displaying the user’s
view, approximated by using Google Street View imagery;
and (4) extracting a sequence of images to create a set of
landmarks.

Figure 3 illustrates the Pupil Player. In the leftmost image,
the software is displaying the current field of view, captured
by the scene camera. The center image depicts the de-
scribed plugin, used to visualize the aformentioned data.
Specifically, it overlays the scene camera image with the
current Google Street View image, and a map indicating the
current location of the user. The rightmost image highlights
the matching algorithm, used to map the scene camera
image to a Google Street View image by computing the ho-
mography matrix.

All our extensions are completely written in Python. We
make use of the Google RESTful API for Static Maps and
Street View. All necessary data can be queried by pass-
ing the location, heading, pitch and size of the target im-
age for the Street View image, and the zoom level for the
Static Map image. We developed an extra plugin to transfer
GazeProjector’s feature tracking into Python. For this, we
use the OpenCV 3.1 library, which offers implementations
of FREAK&FAST [17] for feature detection and description
and FLANN [15] for key feature matching. For faster pro-
cessing, we downscale the Street View images to 640 x
480 and the scene camera images to 360 x 180 pixels. We
achieve up to 30 fps, i.e. the processing can be done in real
time, and thus also during the data recording.

Preliminary User Study
We conducted a user experiment to verify our proof-of-
concept implementation. To do this, we equipped six par-
ticipants between 22 and 58 years old (M = 39.6, SD = 14.8
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Figure 3: Playback and analysis of the recorded data. The standard Pupil Player is able to play back the data recorded by the eye tracker (left
image). The developed custom plugin is able to correlate GPS location, head orientation and eye tracking data. For manual analysis, the path
on a Google Map is shown (center figure (1)), as well as the Street View image (center figure (2)). The user is able to set some parameters for
the visualization (center figure (3)). Using feature tracking, the plugin determines the transformation between the scene camera’s image and
the Google Street View image (left image)

years), 4 male and 2 female, with our device bundle. All
participants were recruited from a local university campus
and had corrected or normal vision; none reported any vi-
sual impairments (e.g., color blindness).

The task of the participants was to walk a pre-defined route
through the nearby French town of Saareguemines. All par-
ticipants rated their familiarity with this city as ”rather un-
familiar” or ”unfamiliar”. The generated route went through
the inner part of the city and was constructed as a 1.5 km
circular course. The participants were guided using the
off-the-shelf audio navigation part of the Komoot Mobile
App6. As Wenczel et al. showed that the amount of vi-
sual attention on more salient landmarks is not affected
by whether the user learned the route beforehand, or is in-
cidentally learning it, we decided not to explain the route
beforehand [25].

Figure 4: The route that was
walked by the participants. The
participants started through the
park, beginning and ending in front
of the railway station at the red
marker.

As our prior pilot tests showed that direct sunlight could
affect the pupil tracking of the Pupil eye tracker, we added

6https://en.komoot.de/

sunglasses to the head-mounted eye tracking device (as
can be seen in Figure 1). We chose a pair of lightweight
Alpina sports glasses with fracture-resistant polycarbonate
lenses that absorb UV and infrared light.

Every participant was first asked to calibrate the head-
mounted eye tracker while standing. We used the built-in
nine-point 2D calibration procedure of the Pupil framework
on a 15-inch laptop screen. After that, we synchronized it
manually with the phone used for location tracking, i.e. we
captured a start-button press on the phone’s screen with
the scene camera of the eye tracker. The participants were
instructed to follow the audio instructions to finish the route.

During the task, the data was sampled in the following way:
Right after the eye tracker calibration, each participant was
asked to look straight ahead. We sampled data from the
eye tracker for 6 seconds. This was done to have a set of
samples to create a mapping between the gaze direction
and head orientation relative to each other. On the way
through the city, the scene camera video stream and gaze
data were recorded through the Pupil eye tracking device at
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30 Hz; IMU data and location data were recorded at 40Hz
and 2Hz respectively.

Results
To do a first evaluation of our proof-of-concept prototype,
we aggregated all recorded data of each participant, using
the Pupil framework together with the developed plugins.
We then computed the amount of scene camera images,
which we are able to match to Google Street View imagery.
We found that it is possible to successfully match 31.99% of
the scene camera’s images to Street View image data (SD
= 5.6%) on average. That means that we are also able to
compute the homography matrix along a third of the walked
route.

Figure 5: Mean eye movement in
degrees, horizontal vs. vertical
direction.

Figure 6: Mean head movements
in degrees horizontal vs. vertical
direction.

We further wanted to investigate the variability in eye and
head movements: Figure 5 plots the mean eye movements
we recorded during the experiment. We noticed a horizon-
tal eye movement of 7.22° on average, compared to 5.42°
in the vertical direction. Figure 6 shows the same plot for
the observed head movements. Here we noticed 144.23°
for horizontal head movements (yaw angle) on average. In
the vertical direction (pitch angle), we observed 12.06° on
average.

Conclusion & Future Work
In this paper, we presented an approach for the automatic
extraction of a set of landmarks by combining different data
sources with Google Street View imagery. We developed
a wearable device by bundling a Pupil Labs head-mounted
eye tracker with an IMU sensor and an iPhone SE for GPS
logging. We developed a custom plugin for the Pupil Player
that allows us to correlate all these data sources. In con-
trast to existing approaches, we use natural feature track-
ing, to automatically match the scene camera’s image plane
to the appropriate Google Street View imagery and map the

user’s gaze on it. From this we can allocate the attention
and extract a set of landmarks.

The conducted experiment gives first insights into the fea-
sibility of our method. We found that it is possible to extract
landmarks for a person by matching almost a third of all
image data. This seems to be relatively little. Note that we
processed the raw data that was sampled. That means we
did not take into account the fact that Google Street View
images are usually taken from the center of the road. To
increase the accuracy of the results, one would have to in-
corporate the offset between the user’s position and the
position of the Google Street View imagery and adapt the
orientation accordingly. Further, it is very likely that Google
Street View images differ from the current scene images, as
they could contain other objects like cars, or were recorded
in a different season. We noticed a very small variability in
the eye movement data, compared to the head movement.
The observed 7.22° for horizontal movements is within the
macular region of the peripheral system. The large values
for head movements indicate that people tend to move their
head instead of their eyes. On the one hand this could be
caused by the fact that people were walking through an un-
familiar city and tried to see as much as possible. On the
other hand, it might be sufficient to use only the head orien-
tation and location information, which would be a subject for
further research.

In the future we are planning to extend the experiment. We
want to investigate the suitability of the computed land-
marks compared to existing methods. We also want to find
out whether we can extract personalized landmarks and
e.g. use them in a life-logging manner similar to [10]. Nav-
igation might be even easier and more natural if we could
extract a set of landmarks that fit the user’s typical attention
behavior.
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