
Parallel Tracking and Reconstruction of States in
Heuristic Optimization Systems on GPUs

1st Marcel Köster
Saarland Informatics Campus

Saarbrücken, Germany
firstname.lastname@dfki.de

2nd Julian Groß
Saarland Informatics Campus

Saarbrücken, Germany
firstname.lastname@dfki.de

3rd Antonio Krüger
Saarland Informatics Campus

Saarbrücken, Germany
firstname.lastname@dfki.de

Abstract—Modern heuristic optimization systems leverage the
parallel processing power of Graphics Processing Units (GPUs).
Many states are maintained and evaluated in parallel to improve
runtime by orders of magnitudes in comparison to purely CPU-
based approaches. A well known example is the parallel Monte
Carlo tree search, which is often used in combination with more
advanced machine-learning methods these days. However, all
approaches require different optimization states in memory to
update or manipulate variables and observe their behavior over
time. Large real-world problems often require a large number
of states that are typically limited by the amount of available
memory. This is particularly challenging in cases in which older
states (that are not currently being evaluated) are still required
for backtracking purposes. In this paper, we propose a new
general high-level approach to track and reconstruct states in the
scope of heuristic optimization systems on GPUs. Our method
has a considerably lower memory consumption compared to
traditional approaches and scales well with the complexity of
the optimization problem.

Index Terms—Heuristic search, state reconstruction, massively-
parallel processing, graphics processing units, GPUs

I. INTRODUCTION

Heuristic optimization is a well researched field in com-
puter science. A prominent example for search-based heuris-
tic optimization algorithms is the Monte Carlo Tree Search
(MCTS) [1]. It is particularly popular these days [2] in
combination with sophisticated machine-learning models to
solve challenging tasks. Over time, many advances have been
made to improve performance on the pure algorithms and
implementation side. Most recent developments involved the
use of Graphics Processing Units (GPUs) to significantly speed
up the optimization process. As it is typically straight-forward
to parallelize over many different optimization states at the
same point in time, it is much more sophisticated to satisfy
memory-consumption requirements.

However, search-based algorithms rely on backtracking with
respect to the domain-specific optimization problem and goal
definitions. These different states in memory contain variables
that can be selected and assigned to different values. Fur-
thermore, there has to be the ability to jump to a previously
expanded state and continue the search in another (unexplored)
search direction. In order to realize a random-access capability
across visited states that might be interesting for backtracking
purposes, these are typically maintained in main memory.
Unfortunately, large-scale optimization problems require many
distinct variables and state-dependent context information of

PREPRINT

several kilobytes per state. This makes it even harder to comply
with memory constraints in terms of the number of states that
can be remembered and processed in parallel.

In this paper, we present a new general high-level approach
that is designed for heuristic optimization systems and is GPU
friendly. It tracks and reconstructs states on-the-fly using a
recovery mechanism and a history that enables us to store state
information in a dense and highly compressed manner. This
achieves significantly lower memory consumption compared
to traditional approaches that require much more detailed state
information during the optimization process. We evaluate our
concept on different scenarios and show that our method scales
well with the complexity of the optimization problem.

II. RELATED WORK

Campeotto et al. [3], [4] propose a framework for parallel
constraint solving on GPUs. In their approach, they store state-
dependent information on the CPU and leverage the GPU
for constraint propagation. Abdelkafi et al. [5] use GPUs
to evaluate the neighborhood of a state in parallel. Lam et
al. [6] proposes a similar concept, while focusing on simulated
annealing. Luong et al. [7], [8] use the GPU to realize a
parallelized Tabu Search. Melab et al. [9] extend this work to a
generalized framework approach to target several optimization
domains. Further work in this area is the paper by Novoa et
al. [10]. They realize a parallel heuristic search implementation
on GPUs for quadratic assignment problems. Another well
researched application is the parallel MCTS, which has been
improved by many researchers over time [11]–[13] that used
parallel architectures to decrease the overall runtime. Zhou et
al. [14] make a comparable advance in this direction on other
traditional algorithms like A?. Most of these papers track their
states in CPU memory and copy the required information to
the GPU for parallel processing. Alternatively, some related
approaches keep all states in GPU memory without the need
to copy states from the CPU during optimization. Nonetheless,
they do not perform any state recovery compared to our
method and suffer from memory-consumption issues on large-
scale problems.

Mostly similar to our approach in terms of memory re-
duction is the approach by Powley et al. [15]. They propose
a strategy that is particularly designed for MCTS to reuse
previously allocated states that are no longer required. For
this recycling purpose, they leverage a pointer-based structure
to link and remap nodes. However, this structure is not
GPU friendly in any kind due to non-coalesced memory

Fig. 1. Our visualized high-level method. In the first step (1), the required GPU and CPU buffers are allocated and the source states are copied from CPU to
GPU memory. Next, we enter the main optimizer loop and perform nested evaluation steps (2) before pruning and resolving and storing history-information
(3). Note that states will not be moved in memory and keep their associated indices during execution steps. Then, we select potentially interesting states based
on history information and perform the recovery step (4). We either continue with the next outer solver loop or break the loop and fetch the final results (5).

accesses [16]. In contrast to their method, we reuse previously
allocated memory in a very aggressive way and reconstruct
states on demand. Our history approach for state reconstruction
is inspired by the basic principle of the neighborhood fitness
structure from Rashid et al. [17]. We follow their approach
to fetch state-dependent information from the GPU into CPU
memory. However, we do neither copy any neighborhood
information nor detailed variable assignments or values from a
state to the GPU. Instead, our method uses only several bytes
of information. It includes a source index to refer to its parent
state, from which it was constructed, and a successor index to
replay previously determined decisions (see subsection III-B).

III. OUR APPROACH

Heuristic optimization problems are commonly solved using
tree-based search as shown in Figure 2. Thereby, we differen-
tiate between two essential phases that have to be performed
during search and state transitions: execution/simulation and
variable assignments. The actual execution logic is realized in
the first phase. In the case of round-based games (like chess),
this phase realizes the actual rules of the game in form of game
logic. More sophisticated rule sets come from real-world use
cases which contain many different constraints and complex
if-conditions. The second phase performs the assignment of
all variables that are either currently not assigned at all
or have been decided to require a new assignment during
the execution step. This process typically involves (different)
domain-specific heuristics that have been trained using ML
methods or have been manually designed for a particular
purpose. In most cases, this also involves drawing random
numbers to decide for a variable or an assignable value. In such
scenarios, it is required to remember the original state (seed)
of the random-number generator for replaying an identical
assignment process (see subsection III-B).

A visualization of our method can be found in Figure 1
and the corresponding algorithm in pseudo-code in Algorithm
1. From a high-level point of view, our approach consists
of five major phases. During initialization, we allocate all
required buffers in GPU and CPU memory and copy the
initial state information to the current buffer on the GPU. We
use double-buffering to allow parallel writing of state output

Fig. 2. A simple search tree and its correspondingly simplified view
onto different iterations. For the sake of simplicity, every layer of the tree
corresponds to a single solver iteration in this example (1-4). However, our
method is not limited to such simple cases and also covers more sophisticated
scenarios, in which states from different iterations are processed at the same
point in time.

information to the next buffer during execution and assignment
steps. Next, we enter the main optimizer loop that iteratively
performs evaluation (exploration), pruning and recovery steps.
This process is repeated until the maximum number of solver
iterations is reached or another domain-specific break-criterion
is encountered. The following sub-sections will give detailed
explanations about the different steps and their functionality.

A. Evaluation Phase
The evaluation phase represents an exploratory step (line

6 in Algorithm 1), in which we apply several execution and
assignments steps in parallel on all states until we reach the
desired evaluation depth (or in other words: the maximum
number of evaluation steps). In the scope of this phase, all
input states will be expanded to the maximum number of
states. Thereby, the expansion strategy is domain and typically
problem specific. A common solution that is suitable for most
cases is to create n =

⌈ |Smax|
|S|

⌉
many clones of each state in

the next buffer (see Figure 3). Afterwards, all resulting states
will be evaluated step by step to find the best ones during
pruning. Finally, both buffers are swapped to have the least-
recent updates in the current buffer.

B. History
The recovery information of theses states will be stored in

the history buffer to be available for future recovery purposes

Fig. 3. Different expansion strategies before the actual evaluation phase. Every
successor state will be expanded a domain- and problem-specific number of
times from the current to the next buffer. Top: a simple regular expansion.
Bottom: an irregular expansion pattern based on custom state properties.

(see Figure 4). This information is stored in CPU memory and
consists of two unsigned 16 bit integers and a single 32 bit
integer. The largest integer is used to store the state rating,
which might be updated during the optimization process.
One of the 16 bit variables contains the source state-index
pointing to the original state index from the previous iteration
that this state was resolved from. The other 16 bit variable
contains the successor index that represents the current random
seed for successor generation during the assignment process.
Alternative realizations might require more involved history
information. However, according to our experience the random
seed and the successor index are typically sufficient for most
optimization problems.

Fig. 4. A sample search tree (left) and an associated history trace for the
path 1 → 2 → 7 → 9 (middle). The history entries contain the required
recovery information (successor index from the previous iteration, state rating
and random seed). All further state-dependent knowledge is discarded as it
can be recovered afterwards (right). Recovery needs an original source state
and a history knowledge about this unique trace to successfully recover the
desired states.

C. Recovery Phase

During recovery, state information is reconstructed using the
same high-level iteration logic that is used during the evalu-
ation phase (see subsection III-A, lines 12-24 in Algorithm
1). However, the major difference between the two phases is
the fact that we use previously determined recovery indices
to reconstruct the states based on their successor information.
Note that this information is stored in CPU memory in our
implementation. This can be efficiently implemented, since
the amount of memory that has to be transferred is usually
around several megabytes and can be copied asynchronously
with respect to all other operations.

Every state that has to be recovered is typically restored
with the help of an initial state (see Figure 4). We perform
all required execution and assignment steps following the

Algorithm 1 High-Level Algorithm
Input: input states on CPU, GPU processing stream
Output: output states on CPU

1: current, next, recover ⇐ AllocateOnGPU(#max states);
2: history ⇐ AllocateOnCPU();
3: current ⇐ CopyToGPU(stream, input);
4: for i = 1 to #iterations do
5: recover ⇐ Copy(stream, current);
6: Evaluate(stream, current, next, #eval steps);
7: Prune(stream, current, next);
8: Synchronize(stream);
9: AddHistory(history, current);

. Prepare recovery from the fast cache
10: recoveryIndices ⇐ ResolveRecovery(history);
11: recovery = recoveryIndices \ indices(recover);
12: for each index ∈ recovery do
13: Copy(stream, input, index, current);
14: end for

. Recover states from the beginning
15: if |recovery| 6= 0 then
16: Recover(stream, current, #recover steps ·(i− 1));
17: end if
18: for each index ∈ recoveryIndices ∩ indices(recover) do
19: Copy(stream, recover, index, current);
20: end for

. Perform recovery of current iteration
21: Recover(stream, current, #recover steps);
22: end for
23: output ⇐ CopyToCPU(stream, current);

previously stored decision information. This does not impose a
significant overhead, since the number of states that have to be
recovered is typically much smaller than the maximum number
of states that has to be processed for exploration purposes.
There is an exception to this process: If we have to recover a
state from the previous iteration, we will use a fast recovery
cache that stores all previous states. This allows us to skip
many recovery iterations in most common cases in which we
perform a single back-tracking operation only.

D. Fill Rate

Usually, an assignment step is much more expensive than a
default execution step. In order to improve the overall runtime,
we should try maximize the parallelism in terms of the number
of states that require an assignment step. A straight-forward
solution would be an immediate assignment step after a single
variable in the scope of one state requires an assignment. This
works reasonably well for a small number of states. However,
if we increase the number of states, the probability that we
require a new assignment step increases significantly. Let p
be the probability that a single state requires an assignment.
Then, the overall probability that we have to break for an
assignment step with respect to the number of states is given
by:

P = 1− p|S|, (1)

where |S| is the number of states. Since the naive approach
does not scale well, we have to wait until more states require
an assignment process and skip over them in the scope of
the execution logic. The fill rate F allows to control exactly
this intended behavior: it represents the ratio of states that
require an assignment and the total number of states that is

required until we have to perform an assignment step (see
Figure 5). The higher F is, the more states are required before
we perform an assignment run. However, this number is highly
domain-specific and depends on the actual work loads of the
execution and assignment realizations.

Fig. 5. Different traces of 6 distinct states during evaluation and/or recovery
using 7 steps (from left to right). As visualized in the image, state 2 requires
an assignment after the first step, whereas the others still require further steps
until they need an assignment. Different fill rates are visualized in the diagram
using dashed lines. For instance, a fill rate of F = 0.5 means that at least
half of all states need an assignment before we break the execution loop and
perform an expensive assignment step.

E. A Single Iteration
Algorithm 2 shows the main iteration functionality for a

single optimizer iteration. Note that the actual execution, as
well as all assignment steps, are parallelized across all states
on the GPU. Initially, we have to perform an assignment step
to ensure that no free (unassigned) variables remain. The actual
high-level iteration loop (until we reach the number of desired
steps; see section III) is realized with the help of two nested
loops. In order to avoid invalid execution steps on states that
already wait for an assignment, we use a single bit per state
that indicates whether to continue processing or skip the state.
This bit-set information is reset to its initial state in which all
states require further execution steps in the beginning (line 4).
The inner-most loop performs the actual execution until we
have found a reasonable number (in terms of the fill rate) of
states that require an assignment step or we have reached the
maximum number of steps. As soon as this loop breaks, we
require an additional assignment step and continue processing
until we reach the desired number of exploration steps.

Algorithm 2 High-Level Iteration Logic
Input: GPU processing stream, current buffer, #steps

1: Assign(stream, current);
2: i⇐ 0;
3: do
4: Reset(stream);
5: do
6: i⇐ i+ 1;
7: #finishedStates = Execute(stream, view);
8: if #finishedStates

#maxStates ≥ F then
9: break

10: end if
11: while i < #steps
12: Assign(stream, current);
13: while i < #steps

F. Memory Consumption
As previously mentioned, traditional methods have to keep

all states in memory that are considered in the scope of the
optimization system. Let |Smax| be the maximum number of
the states that can be considered in parallel at a single point
in time for evaluation purposes. Further, let |Sback(i)| be the
maximum number of states that have to be remembered in
iteration i to realize the required backtracking functionality.
This yields a total memory consumption Mtrad(i) for i
iterations of

Mtrad(i) = 2 · |Smax| ·m+

i−1∑
j=1

|Sback(j)| ·m, (2)

where m is the number of bytes of a single state in memory
that includes all required variable assignments and state-
dependent context information. The total memory consump-
tion of the backtracking buffer contains all required states of
every previous iteration to which we can jump in the case of
backtracking. However, in many cases |Sback(i)| ≈ |Smax|,
which is the case for many heuristic optimization systems that
evaluate the neighborhood of every state locally and try to
apply pruning methods with respect to parent information of
every state.

Our method has a significantly lower memory consumption,
which can be further reduced when the fast recovery cache for
the last iteration is disabled. This results in a total memory
consumption of

Mour(i) = 3 · |Smax| ·m+ |Smax| · i ·mhist (3)

bytes, where mhist refers to the size of a single history entry
that has to be remembered. Since mhist << m in practice,
our method is not primarily dominated by the number of
iterations in comparison to existing methods. Consequently,
Mour(i) << Mtrad(i) on practical problem instances for
which m >> mhist and a reasonably large number of look-
ahead iterations i.

IV. IMPLEMENTATION DETAILS

We have implemented our approach and all related methods
in C# using the ILGPU-compiler1 to compile the kernels for
NVIDIA GPUs via PTX [18] for all GPU programs. In the
scope of the GPU kernels, a single thread is assigned to
a single state. We use GPU streams to efficiently schedule
the GPU operations from the CPU side. As outlined in the
previous section, we have to fetch history values for recovery
purposes. These fetching operations require CPU synchroniza-
tion at two points in the implementation. In order to improve
the overall efficiency of our implementation, we heavily rely
on the SOA (structure of array) memory layout [16]. Moreover,
we realize the copy operations of all states for recovery
purposes (lines 10 to 19 in Algorithm 1) using two efficient
copy kernels instead of a set of queued copy operations. The
actual pruning step is realized on the CPU and requires two
additional stream synchronizations. We decided to shift this
work to the CPU side, since more involved state comparators
can be conveniently realized on the CPU.

1www.ilgpu.net

V. EVALUATION

For evaluation purposes, we abstract from real-world in-
terpreter and assignment logic to avoid hard-to-reproduce
and difficult to understand benchmarks. Since many modern
heuristic-based search and optimization systems leverage neu-
ral networks for rating possibilities and assigning variables,
we model the assignment step via iterative matrix-matrix
multiplications. This simulates more- and less-expensive net-
work evaluations during the assignment step. Similarly, the
actual interpreter steps are also realized via matrix-matrix
multiplications to model computationally-dependent logic:

A ∈ RM×N ·B ∈ RN×O, (4)

which requires 2MNO−MO number of floating-point oper-
ations in our evaluation benchmark [19]. However, in real-
world applications the computation load of the assignment
step is typically much larger than a single interpreter step (for
instance, a large-scale neural network has to be evaluated).
For this reason, we introduce a load factor L that represents
the overhead of an assignment step over an interpreter step. In
other words, if an interpreter step has a computation load of C,
then the assignment step will have a load of C ·L. We choose L
to be at least 10, in order to have a realistic baseline. The down
side of this approach is the fact that we do either not break for
assignments at all or we always break at the same time. This
does not reflect reality in any sense: Different states typically
break at different points in time. We use distinct probabilities
for every state during execution to determine whether to break
for an assignment step or not. This probability is referred to as
P in the scope of the evaluation, where a larger value indicates
a higher probability of all states to break for an assignment. We
choose the fill rate F to be larger or equal to 0, where F = 0
refers to the case in which we always break for an assignment
as soon as a single state requires an assignment step. This
simulates traditional approaches in which F is not used. The
maximum value is F = 100, which causes the assignment
component to wait until all states require an assignment step.

L S P F 1080 Ti σ Titan X σ

10 16384 30% 0% 16.46 0.01 25.19 0.02
* * * 30% 7.17 0.05 10.70 0.05
* * * 60% 5.61 0.08 8.14 0.02
* * * 100% 5.62 0.07 8.16 0.04
* * 70% 0% 16.62 0.04 25.23 0.01
* * * 30% 7.22 0.01 10.66 0.01
* * * 60% 5.65 0.05 8.15 0.07
* * * 100% 5.65 0.02 8.12 0.03
* 65536 30% 0% 45.23 0.03 71.54 1.76
* * * 30% 17.73 0.27 28.05 0.10
* * * 60% 13.17 0.28 19.73 0.04
* * * 100% 13.14 0.12 19.61 0.05
* * 70% 0% 45.17 0.02 70.19 0.01
* * * 30% 17.74 0.26 26.84 0.03
* * * 60% 13.15 0.27 19.60 0.06
* * * 100% 13.16 0.75 19.62 0.04

TABLE I
INFLUENCE OF THE NUMBER OF STATES, THE ASSIGNMENT

PROBABILITIES AND THE FILL RATE ON THE OVERALL RUNTIME. GPUS:
GEFORCE GTX 1080 TI AND GEFORCE GTX TITAN X. TIME IN

MILLISECONDS.

We used two GPUs from NVIDIA (a GeForce GTX 1080
Ti and a GeForce GTX Titan X). Every performance mea-
surement is the median execution time of 100 algorithm
executions. The number of states S is chosen to be a power of
2 to fill some thread groups on both devices (see section IV).

L S P F 1080 Ti σ Titan X σ

100 16384 70% 0% 130.65 0.02 207.30 0.00
* * * 30% 40.49 0.03 63.35 0.02
* * * 60% 25.45 0.01 39.36 0.00
* * * 100% 25.44 0.00 39.35 0.01

1000 * * 0% 1270.03 0.03 2027.66 631.9
* * * 30% 372.12 0.00 589.45 0.02
* * * 60% 222.51 0.01 349.75 0.02
* * * 100% 222.47 0.00 349.77 0.03

100 65536 * 0% 375.29 0.01 618.452 86.8
* * * 30% 104.88 0.02 167.84 0.94
* * * 60% 59.86 0.01 93.98 0.02
* * * 100% 59.81 0.00 93.97 0.02

1000 * * 0% 3677.69 0.01 6003.79 1228
* * * 30% 977.59 0.02 1559.17 42.58
* * * 60% 527.57 0.03 837.12 0.05
* * * 100% 527.57 0.01 837.21 0.07

TABLE II
INFLUENCE OF THE COMPUTATIONAL LOAD ON THE OVERALL RUNTIME.
GPUS: GEFORCE GTX 1080 TI AND GEFORCE GTX TITAN X. TIME IN

MILLISECONDS.

The first part of the evaluation focuses on a parallel tracking
of all states in the scope of a single solver iteration since
all required assignment and execution steps happen within
one iteration. Increasing the number of iterations will (ap-
proximately) result in a linear scale of the measured runtime.
However, in practice the approach scales better than linear in
many cases since we can avoid different accelerator-stream
synchronization operations between iterations. Within this
single iteration, we use a straight-forward Runge-Kutta scheme
to evaluate and recover states. We always perform 8 iterations
per evaluation step (Runge-Kutta look-ahead step) including
assignments and a single recovery step (Runge-Kutta forward
step) including assignments. Table I shows the main evaluation
table demonstrating the impact of the number of states, the
assignment probabilities P and the fill rate F on the overall
runtime. The GeForce GTX 1080 Ti is approximately between
1.5× and 2× faster on all benchmarks compared to the
GeForce Titan X. As visualized in the benchmarks, increasing
P does not change the overall runtime in any case. This is due
do the fact that already a small number of 16384 states with
a low probability of P = 30% will cause the iteration loop to
break in nearly every step (the worst case). In all situations,
a fill rate F ≥ 2

3 does not lead to any further performance
improvements, since most of the states are already waiting for
an assignment in these cases. Table II shows the impact of the
load factor on the runtime. The measurements clearly show the
scalability of our method on the GPUs when L is increased.
In comparison to Table I, we can see the same influence of F
on the overall runtime.

The second part of the evaluation targets memory consump-
tion. For this purpose, we vary the number of states and the
size in bytes of a single state. We assume that we are already
in solver iteration 16 and have to backtrack to iteration 15,
where ∀i : |Sback(i)| = |Smax| (see subsection III-F) and a
single state in history consumes 8 bytes (see subsection III-B).
Table III shows details about the required total memory
consumption (CPU + GPU) of our method in comparison to
traditional approaches that keep all states in memory. However,
as we treat memory consumption for runtime performance, we
also evaluated the overall runtime overhead in Table IV. In
this test, we performed 16 recovery iterations based on the
previously described Runge-Kutta scheme using L = 10, as

before. We compared our runtime overhead against a tradi-
tional approach that either keeps all states in GPU memory or
in CPU memory. In all cases, the required state information
has to be copied to the current buffer for further processing.
Comparing our method to methods having all states in GPU-
memory is roughly 3× slower. As not all states can be kept
in memory (as shown in Table III), a CPU-based storage is
often required. Comparing our recovery method to this concept
yields speed-ups of approximately factor 6.

S Mhist M Rec. Cache Our Method All states
16384 8 32KB × 3.5GB 8.5GB

* 8 * - 3GB *
* 8 64KB × 5GB 17GB
* 8 * - 4GB *
* 8 128KB × 8GB 34GB
* 8 * - 6GB *

65536 8 32KB × 14GB 34GB
* 8 * - 12GB *
* 8 64KB × 20GB 68GB
* 8 * - 16GB *
* 8 128KB × 32GB 136GB
* 8 * - 24GB *

TABLE III
TOTAL MEMORY CONSUMPTION WITH A RECOVERY PHASE FOR SOLVER

ITERATION 16 WITH AND WITHOUT OUR FAST RECOVERY CACHE. M
REFERS TO THE SIZE IN BYTES OF A SINGLE OPTIMIZATION STATE. Mhist

IS 8 BYTES IN ALL CASES. TIME IN MILLISECONDS.

S M Our Method σ All states GPU σ

16384 32KB 11.43 0.51 3.31 × 1.48
* * * * 70.99 - 26.26
* 64KB 20.59 0.88 6.59 × 1.97
* * * * 144.96 - 39.83
* 128KB 39.31 3.19 12.87 × 2.75
* * * * 285.07 - 89.07

TABLE IV
RUNTIME OVERHEAD WITH A RECOVERY PHASE OF 15 ITERATIONS IN THE

CURRENT SOLVER ITERATION 16. L WAS SET TO 10 AND F TO 2
3

. GPU:
GEFORCE GTX 1080 TI. TIME IN MILLISECONDS.

VI. CONCLUSION

In this paper, we have presented a new high-level concept to
track and reconstruct states in heuristic optimization systems
on GPUs. Our method is a suitable extension to nearly
every currently available optimization system, as it is straight-
forward to implement and provides a good balance between
performance and memory consumption.

The presented evaluation demonstrates the scalability of
our method with respect to different workloads, memory
consumption and recovery performance overhead. We detected
that a fill rate of larger 2

3 is usually sufficient to achieve
maximum performance based on our evaluation scenarios. On
the one hand, the memory consumption can be significantly
reduced in comparison to traditional methods that have to keep
nearly all states in memory. On the other hand, our method
trades memory consumption for computational power which
leads to minor slow-downs in scenarios in which all states
can be kept in GPU memory. However, as these cases are
uncommon for large optimization problems, many states have
to be copied back to CPU memory, which performs much
slower than our recovery approach.

In the future, we would like to experiment with more ad-
vanced recovery-mechanisms that automatically decide which
states to cache in which memory buffer. Moreover, we would
like to add a multi-stage caching concept that manages and
combines recovery information across different iterations.

Applying our approach to multi-GPU scenarios and their
synchronization with respect to state information could also
be a very promising next step.

ACKNOWLEDGMENT

The authors would like to thank Gian-Luca Kiefer and
Thomas Schmeyer for their suggestions and feedback regard-
ing our paper.

REFERENCES

[1] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling,
S. Tavener, D. Perez, S. Samothrakis, S. Colton, and et al., “A survey
of Monte Carlo tree search methods,” IEEE TRANSACTIONS ON
COMPUTATIONAL INTELLIGENCE AND AI, 2012.

[2] S. Gelly, L. Kocsis, M. Schoenauer, M. Sebag, D. Silver, C. Szepesvári,
and O. Teytaud, “The Grand Challenge of Computer Go: Monte Carlo
Tree Search and Extensions,” Communications of the ACM, 2012.

[3] F. Campeotto, A. Dal Palù, A. Dovier, F. Fioretto, and E. Pontelli,
“Exploring the Use of GPUs in Constraint Solving,” in Practical Aspects
of Declarative Languages, 2014.

[4] F. Campeotto, A. Dovier, F. Fioretto, and E. Pontelli, “A GPU Im-
plementation of Large Neighborhood Search for Solving Constraint
Optimization Problems,” in Proceedings of the Twenty-first European
Conference on Artificial Intelligence, 2014.

[5] O. Abdelkafi, K. Chebil, and M. Khemakhem, “Parallel local search
on GPU and CPU with OpenCL Language,” in Proceedings of the first
international conference on Reasoning and Optimization in Information
Systems, 09 2013.

[6] Y. Ming Lam, K. Hung Tsoi, and W. Luk, “Parallel neighbourhood
search on many-core platforms,” International Journal of Computational
Science and Engineering, vol. 8, 2013.

[7] T. V. Luong, N. Melab, and E.-G. Talbi, “Neighborhood Structures
for GPU-based Local Search Algorithms,” Parallel Processing Letters,
2010.

[8] T. V. Luong, L. Loukil, N. Melab, and E. Talbi, “A GPU-based
iterated tabu search for solving the quadratic 3-dimensional assignment
problem,” in ACS/IEEE International Conference on Computer Systems
and Applications (AICCSA), 2010.

[9] N. Melab, T. V. Luong, K. Boufaras, and E.-G. Talbi, “ParadisEO-MO-
GPU: a framework for parallel GPU-based local search metaheuristics,”
in 11th International Work-Conference on Artificial Neural Networks,
2011.

[10] C. Novoa, A. Qasem, and A. Chaparala, “A SIMD Tabu Search Im-
plementation for Solving the Quadratic Assignment Problem with GPU
Acceleration,” in Proceedings of the 2015 XSEDE Conference: Scientific
Advancements Enabled by Enhanced Cyberinfrastructure, 2015.

[11] G. M. J. B. Chaslot, M. H. M. Winands, and H. J. van den Herik,
“Parallel Monte-Carlo Tree Search,” in Computers and Games, 2008.

[12] K. Rocki and R. Suda, “Massively Parallel Monte Carlo Tree Search,”
Proceedings of the 9th International Meeting High Performance Com-
puting for Computational Science, 2010.

[13] C. Xiao, J. Mei, and M. Müller, “Memory-Augmented Monte Carlo Tree
Search,” 2018.

[14] Y. Zhou and J. Zeng, “Massively Parallel A* Search on a GPU,” 2015.
[15] E. Powley, P. Cowling, and D. Whitehouse, “Memory Bounded Monte

Carlo Tree Search,” 2017.
[16] NVIDIA, CUDA C Programming Guide v10, 2019.
[17] L. T. Mohammad Harun Rashid, “Parallel Combinatorial Optimization

Heuristics with GPUs,” Advances in Science, Technology and Engineer-
ing Systems Journal, 2018.

[18] D. Lustig, S. Sahasrabuddhe, and O. Giroux, “A Formal Analysis of
the NVIDIA PTX Memory Consistency Model,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019.

[19] R. Hunger, “Floating Point Operations in Matrix-Vector Calculus,”
Technische Universität München, Tech. Rep., 2007.

	Introduction
	Related Work
	Our Approach
	Evaluation Phase
	History
	Recovery Phase
	Fill Rate
	A Single Iteration
	Memory Consumption

	Implementation Details
	Evaluation
	Conclusion
	References

