FANG: Fast and Efficient Successor-State
Generation for Heuristic Optimization on GPUs*

Marcel Késter!, Julian GroB!, and Antonio Kriiger!

Saarland Informatics Campus, Campus D3.2, 66123 Saabriicken, Germany
{firstname.lastname}@dfki.de

Abstract. Many optimization problems (especially nonsmooth ones)
are typically solved by genetic, evolutionary, or metaheuristic-based al-
gorithms. However, these genetic approaches and other related papers
typically assume the existence of a neighborhood or successor-state func-
tion N(z), where z is a candidate state. The implementation of such a
function can become arbitrarily complex in the field of combinatorial op-
timization. Many N (x) functions for a huge variety of different domain-
specific problems have been developed in the past to solve this general
problem. However, it has always been a great challenge to port or realize
these functions on a massively-parallel architecture like a Graphics Pro-
cessing Unit (GPU). We present a GPU-based method called FANG that
implements a generic and reusable N (x) for arbitrary domains in the field
of combinatorial optimization. It can be customized to satisfy domain-
specific requirements and leverages the underlying hardware in a fast and
efficient way by construction. Moreover, our method has a high scalabil-
ity with respect to the number of input states and the complexity of a
single state. Measurements show significant performance improvements
compared to traditional exploration approaches leveraging the CPU on
our evaluation scenarios.

Keywords: Heuristic search, combinatorial optimization, successor-state gen-
eration, neighborhood exploration, massively-parallel processing, graphics pro-
cessing units, GPUs

1 Introduction

There are many different optimization algorithms for a huge variety of problems.
Every problem can be assigned to a category and different methods are used to
solve a problem—even in the scope of a single problem category. Convex optimiza-
tion problems have the advantage that a local optimum is equal to the global
optimum. However, so called nonsmooth optimization problems (NSPs) are typ-
ically assumed to be non-convex. Furthermore, it is not possible in general to
determine the direction into which an optimizer has to continue from a certain
point in order to find a better solution. Such problems are often optimized by
different genetic, evolutionary or in general heuristic-based algorithms.

* PREPRINT

2 Koester et al.

@

Neighborhood
Search Space

Fig. 1. The first image shows the abstract and large neighborhood search space around
a single optimization state (1). We have to identify possible (with respect to constraints)
and beneficial (with respect to the cost function) neighboring successor states within
this very large search space (2). Since it is typically not possible to explore all potential
successors, the available possibilities are rated according to heuristics (3). Once the
different ratings are available, a selection strategy chooses possibly beneficial successor
states out of this set.

Opt. State

In order to apply existing optimization algorithm for heuristic search, a lo-
cal neighborhood or successor-state function is required to enumerate all states
nearby ([Figure 1). Without such a function, possible candidate states of a single
source state cannot be determined. This functionality is typically referred to by
N(z), where z is a candidate state in the scope of the optimizer [4]. However,
N(z) can become arbitrarily complex and difficult to implement, even when
focusing on the pure algorithms and logics. If we consider an implementation
on a high-performance massively-parallel processor like a Graphics Processing
Unit (GPU), a default CPU-based implementation of N(z) has to be manu-
ally adapted and tuned to the target hardware. Since many heuristic optimizers
track multiple candidate states at the same time, a simple way to parallelize a
successor-state generation would be to simply invoke a sequential existing N (x)
function for every state in parallel. However, this typically sacrifices a large
amount of performance since it often leads to non-optimal memory-access pat-
terns and does not pay attention to other hardware-specific peculiarities like
single-instruction multiple threads (SIMT) unitsﬂ Hence, developers have to ad-
just their implementation to these hardware characteristics, which is error-prone
and time consuming [6]. Consequently, an arbitrary N(z) function on a GPU,
for instance, becomes even more sophisticated to implement.

In this paper we present a new method to implement domain-independent
N (z) functions for combinatorial heuristic optimization on massively-parallel ar-
chitectures using SIMT units. It is designed to achieve a high utilization of the
available processing power and scales well with the number of variables, pos-
sibilities per variable and the number of states. This allows for an application
to large optimization problems that significantly benefit from parallel process-
ing. Furthermore, it enables the design and the implementation of GPU-based
optimizers that can perform nearly all required steps in parallel without high
communication overhead to the CPU (the transfer of state information during
the optimization process, for example). In order to guide N(z) to enumerate
possibly interesting states, we offer so called local heuristics that guide the gen-

! We will refer to a single SIMT unit as warp in the scope of this paper.

FANG 3

eration of successors. Since our method only determines the direct neighboring
or potential successor states for a given set of states, it can be easily integrated
into any existing optimization algorithm like Tabu Search. We demonstrate sev-
eral use cases in the evaluation section and show the significant improvements
in terms of performance and scalability.

In the remainder of this paper, we focus on related work from the field of
parallel neighborhood exploration in the context of heuristic optimization. We
introduce our method in [section 3| and present a detailed explanation how the
general algorithm works (subsection 3.1} [subsection 3.2)) and can be implemented
on GPUs (subsection 3.4). The evaluation (section 4f) shows different optimiza-
tion problems that were optimized using our N(z) implementation.

2 Related Work

There has been a lot of work on using GPUs for solving optimization problems
in general. We focus on a selection of papers that involve N(x) realizations in
favor of purely parallelized optimization algorithms.

Campeotto et al. 3] focus on parallelizing constraint solving using GPUs.
They use a hybrid design in which they switch between CPU and GPU in every
solver step: The actual constraint propagation and consistency checks are exe-
cuted on the GPU, whereas the main solver runs on the CPU. This can be seen
as a parallel evaluation of several potential states in the scope of an abstract
N(x) function, which is primarily evaluated on the CPU side. For general work
on local search and constraint programming we refer the interested reader to [4].

A follow-up paper by Campeotto et al. [2] goes into more detail about the
neighborhood processing functionality. The CPU selects subsets of variables to
explore and copies the required information to the GPU. Afterwards, the GPU
can process the different sets and explore the resulting states in parallel. They
use different strategies (called local search strategies) to select these potentially
interesting subsets. This is very related to our approach; however, we perform the
whole N(z) evaluation in parallel on the GPU without the need for additional
CPU communication.

Munawar et al. [14] investigated solving of MAX-SAT problems on GPUs
using efficient genetic algorithms and local search. The neighborhood exploration
is based on a 4D virtual grid which yields four neighbor possibilities (2D) for
every individual and four possibilities for every population (2D) in the scope
of the genetic algorithm. This can be directly mapped to GPUs using multiple
thread groups that process all possibilities in parallel. This is very similar to
our approach: the whole neighborhood exploration is performed on the GPU.
In contrast to their N(x) implementation, our method can work with arbitrary
local-search criteria and is not tied to a particular mathematical optimization
model (MAX-SAT in this case).

A combination of the previously presented approaches is the one by Abdelkafi
et al. [1]. They leverage OpenCL to evaluate the neighborhood in parallel by as-
signing different threads to different neighbors. Afterwards, they evaluate each
neighbor sequentially in the scope of their optimization system. They investi-
gated the knapsack problem and the travelling salesman problem (TSP) using

4 Koester et al.

Fig. 2. High-level view of our method when it is applied to a single optimization state.
1 2 5
QFind active variables | CPRes. # of possibilities| CPMap ratings |

IEI BB 0 E 6 CeE) (i W e 6)
rvyvy v/

...@l.. [RU R o) (74 [v >t) (3)

.. . . . QRateeach p055|b|I|ty QAggregate ratmgs]

6 7
QCompute decision space] CPDecide fora value] Map decision to

possibily end

apply possibility

their method by leveraging customized data structures during neighbor genera-
tion. In comparison to our approach, they are limited to manually adjusting their
method based on the domain and do not support any kind of variable-assignment
ratings. The latter one is particularly important when exploring extremely large
neighborhoods that cannot be expanded in memory (see . Similar to
these general approaches is the one by Lam et al. [12]. They investigated a par-
allelization of TSP on CPUs and GPUs using simulated annealing. As before,
the proposed neighborhood generation is wired to and specialized for the under-
lying mathematical optimization model which makes it difficult to reuse it in a
different context.

Luong et al. [8,|9] use the GPU to explore the neighborhood of a single
state and to evaluate the consequences of several decisions. In this context, they
focus on binary problems using different Hamming Distances. Again, this ap-
proach lacks generality: a generic problem of an unknown domain requires a
much more sophisticated concept to explore the neighborhood. They also ap-
plied their own successor-generation approach in a parallelized implementation
of Tabu Search [7]. Ghorpade et al. [5] used the method by Luong et al. to per-
form a parallel evaluation of all neighboring states in the domain of TSPs using
the 2-opt algorithm. They adapted the method in such a way that they have en-
coded their own structures and strategies to generate successor states according
to their use case. In a follow-up work from Melab et.al [11], they extended Luong
et al.’s method to perform a whole framework-based approach. They use GPU
acceleration for neighborhood exploration based on local-search metaheuristics
as before. However, the basic exploration approach in the paper stays the same
as before.

Novoa et al. |15] created a parallel search implementation for the quadratic
assignment problems on GPUs. They use permutations to generate successor
states in the scope of their GPU kernels. Their algorithm is based on a binary
decision structure that allows variables to be 0 or 1. This significantly simplifies
the permutation process in this domain compared to our generic approach.

The probably most related work is the one by Rashid et al. [13]. They discuss
challenges of designing neighborhood generation on GPUs in general and give
several proposals. Furthermore, they provide high-level algorithms to realize a

FANG 5

GPU optimization system based on S- and P-metaheuristics [19]. However, they
do not give a detailed explanation regarding neighborhood generation. Their
high-level approach already relies on a notation of N(x). Once they have this
abstract concept at hand, they can build upon this and apply their algorithms.

3 FANG

As previously mentioned, a heuristic optimization system often tracks multiple
candidate states at the same point in time. Thereby, a single optimization state
consists of state-dependent information and several variables Ay that are part of
the optimization problem, where k € {1,...,|A|} and |A| refers to the number of
variables. A common task is to find an assignment of all variables A to values V,
according to the individual constraints of every variable in order to find the best
state according to a given cost function, where [€ {1,...,|V|} and |V| refers
to the number of possibilities. Our target are large-scale optimization problems
that require the evaluation of hundreds of possibilities per variable and a large
number of candidate states. As previously mentioned, the number of neighbor
states might be very large, and thus, cannot be simply generated or returned
by N(x). Instead of creating and iterating over all neighbor states, we have to
limit the range and want to enumerate only potentially ”interesting” successors
of a given state. In order to explore the neighborhood of every variable, we
build upon the basic ideas for random-based local-exploration by Munawar et
al. |14] and Campeotto et al. [2]. However, instead of randomly choosing and
assigning variables, we investigate assignment possibilities of all variables and
determine probabilities for every possible assignment (see below). We chose a
single possibility based on a random value that is determined using a uniform
random distribution.

We propose the concept of local heuristics that guide the successor generation
in such a way that they rate variable assignments (see . In other words,
they answer the question: Is an assignment of variable \; to value V; a good
choice? They are called local, since the question is answered locally per variable
and assignment: the rating of the assignment A\, — V; takes the current state
x into account but does not pay attention to other possible assignments of this
variable. This leads to a major benefit: all ratings can be considered in parallel
since every potential assignment is treated on its own. However, assignments of
other variables have to be considered during the actual successor construction.
There might be a constraint that hinders the assignments of two variables Ag
and A; to the same value V), for instance. For this reason, we assign different
variables sequentially in general. This avoids race conditions during variable
assignments and simplifies the rating process: Every rating can be computed
by accessing all other already assigned variables since the optimization state
is read only at this point in time. This is not a strict limitation and can be
relaxed if multiple variables can be assigned without any interference. We further
distinguish between different variable types (referred to as AT). This is useful
for many domain-specific problems that leverage different heuristics for distinct
variables in order to simplify the modeling process.

6 Koester et al.

3.1 High-Level Algorithm

From a high-level point of view, we distinguish between active variables that
have to be assigned to a wvalue and inactive ones that do not require a new
assignment. Whether a variable is active or not during successor creation is
typically determined by the surrounding optimization system. We assume that
the decision step already happened and our task is to find all active variables
that require an assignment in this step (Figure 2t1).

First, we have to pick an active variable and have to resolve the number of
possibilities to assign the current one (Figure 22)?] Second, we can rate each
possibility using a local heuristic (Figure 2f3). Thereby, a rating value R has a
user-defined value type that is opaque to our algorithm. Since the initial rating
itself is designed as a local process that handles every possibility independently,
we added the opportunity to define a custom rating aggregator that accumulates
global information about all ratings (Figure 2[4). An aggregator can carry mul-
tiple aggregation values that are combined with the help of custom aggregation
functions. This step happens during and immediately after all possibilities have
been rated.

Afterwards, we can perform a mapping operation to convert each user-defined
rating R using the globally aggregated information into a mapped rating M € N
5). From a theoretical point of view, a mapped rating can be seen as
a probability of the associated assignment possibility. Note that the value 0 of a
mapped rating M corresponds to a probability of 0. This allows to easily forbid
possibilities that cannot/should not be selected for some reason. In practice,
however, it is much easier to convert the initial rating into another value € N that
can be converted to an assignment possibility (see : A larger mapped
rating indicates a higher probability with respect to the sum of all mapped
ratings M (Figure 2}6). Next, we pick a uniformly-distributed random value
v between 1 and M (Figure 2/7). We have to remap the chosen value v to
an associated mapped rating M, and thus, to its original possibility [it was
computed from 8). Finally, we can apply the selected possibility [and
its associated (domain-specific) value V; by assigning the variable A\;. The whole
process will be repeated until no active variable can be found any more.

3.2 Low-Level View

The whole algorithm can be realized with the help of a single GPU kernel.
Every thread group (consisting of N threads) on the GPU handles a single
optimization state and assigns all active variables in a cooperative way. The
variables of a single state are managed with the help of Boolean sets

1, see [subsection 3.8|). Starting with these sets, we have to iterate over all active
variables (Figure 42). The number of possibilities per variable is resolved by
all threads of the group in parallel. This avoids expensive group-synchronization

operations by preferring operations on registers. Alternatively, the number of
possibilities could be resolved by the first thread of the group and can be made

2 The number of possibilities can be seen as a subset of all possible successor states

from 2.

FANG 7

Fig. 3. Sample rating mapping that realizes a non-trivial rating process (see
for more details). Eight different possibilities are individually rated according
to a user-defined rating function (top). In this sample, positive ratings directly cor-
respond to their final mapped value (middle). Negative values that are computed by
the rating function should be more important than the largest positive value. For this
reason, the custom aggregator stores the maximum value of all ratings which can be
directly used to remap negative values. All mapped ratings are accumulated in order
to derive their individual probability (bottom). Larger intervals correspond to higher
probabilities. We can then choose our decision value v out of the computed set of
values. This value is then mapped to a target interval, and thus, to a target value to

assign.

| i : L Agg2: Max(..)—» 38

-20 40

0

| H H [
0 60
3 l“l ..

accessible by all other threads via shared memory. It reduces the number of
active warps and leaves more opportunities to the warp dispatcher. However,
we have not seen any computationally or memory-expensive implementations
that made it necessary to rely on shared memory and group synchronization in
practice.

Every possibility will be processed by a single thread using a group-stride loop
(Figure 4}3). This ensures coalesced memory accesses in the scope of the heuristic
h and the rating storage. The latter one stores all computed intermediate user-
defined rating values R from the heuristic in global memory. Storing computed
ratings avoids expensive re-computations during the mapping process. If a re-
computation of all possibilities is much cheaper than storing the values in global
memory, the rating storage can be omitted. However, storing the values in global
memory does not impose a significant overhead when processing a large number
of states since the memory latency could be hidden by the GPU.

The rating aggregators are locally maintained in register space in the scope
of every thread. All computed ratings are directly accumulated using the local
aggregators which avoids synchronization with other threads. After computing
and storing all R values, the individual intermediate aggregators are combined
into a globally available aggregator (Figure 4t4). The global aggregator can be
stored in shared memory, registers or local memory depending on the individual
requirements and the user-defined heuristic implementation (since it is readonly
after the aggregation step).

Next, we map all rating values R to their mapped counterparts M using the

previously computed aggregator information (Figure 4}5). We conceptionally
split all mapped ratings into segments of the size of a single warp. This enables

8 Koester et al.

Fig. 4. Low-level view of our method that is closely related to Algorithm [T] Black ar-
rows indicate memory accesses. Red /organge arrows indicate global memory accesses
to allocated regions our approach requires. Blue/green arrows indicate logical associa-
tions. Red arrows mark decisions. Dashed boxes are intermediate information that is
available to all threads.

j[Find active variables % Res. # of possibilities Rate each possibility
Variable Set Variable Range /
[1]2]3]4]5 6] 7|8 f—[B31=o) [-] &3
E 1011'121314'1516'\ [Thread 1 Thread N

3 3 3
Variable Range
17/18/19120121/22/23124, g |Aggregator1] [.. || [Aggregator N
DR e i;iﬂ% T ratngsomge

LT LT LT
|

|

4
CPAgg all aggregators | ¥ C]>Map ratings / build segment lookup] l QAsggnment p055|ble?]

o5 |
Y

A b b

Decide for a value

0
: @Apply decided possibility |

Pt Srage
iﬁiﬁ@r»i@i@i

us to build an acceleration structure that significantly speeds up the possibil-
ity resolving step in the end. The acceleration structure is completely stored
in shared memory and consumes a single 64bit unsigned integer per segment.
Leveraging shared memory ensures high-performance random-access lookups and
avoids consumption of additional global memory. The disadvantage of this con-
cept is the limited number of possibilities per variable that can be stored in
shared memory: Assuming 24kb of shared memory per thread groupﬂ and a
warp size of 32 , yields a total number of % - 32 = 98304 possibilities.

All individually computed mapped ratings M will be processed using a group-
stride loop. They are on-the-fly accumulated in the form of a prefix sum that is
computed for the whole group after every thread has mapped its associated rat-
ing value R. Using a prefix sum allows us to represent the different probabilities
that are implied by all M values (see [Figure 3). The resulting prefix-sum values
will be written into a prefiz-sum storage that resides in global memory. Again,
this avoids expensive prefix-sum re-computations (see above). In the same run,
the first thread of every warp stores the right boundary value of all threads in
the warp by writing its value into the shared-memory segment lookup.

9
QNO assignment possible

3 Without limiting the parallel execution of multiple groups per multiprocessor.

FANG 9

In the 6th step 6) all threads determine whether an assignment is
possible or not. This breaks down to a simple check whether the value of the
last segment in the used lookup is zero or not. If no assignment is possible, we
will have to deactivate the current variable A, (Figure 49) and continue with
the next active one. If an assignment is possible, every thread in the group picks
the same decision value v that is less than the maximum prefix sum value of the
last segment.

The last two phases resolve the possibility that belongs to the chosen decision
value v. First, we have to identify the target segment that narrows the search
space to the number of threads in a warp 7). We do not leverage any
advanced search algorithm to find the target segment (like a binary-search, for
instance). Instead, we simply check each segment using a single thread and group-
stride loop. Once the target segment has been found, the first warp of every group
investigates all potential matches in the target segment in parallel (Figure 4}8).
Only one thread can win during the comparison of its neighboring prefix-sum
values to the chosen value v, Finally, this thread applies the decided possibility
V; to the current variable A\; and deactivates it. Afterwards, we continue with
the next active variable by repeating the whole assignment process.

3.3 Successor Generation

The actual successor generation process happens in three steps (see .
We leverage a double-buffer approach: a source and a target buffer containing all
state information. First, the source states from the readonly source buffer will
be cloned into the target buffer. A user defined parameter specifies the number
of successors per input state. A common scenario in this context is a single
input state that will be expanded several times in the target buffer. Second, the
successor indices will be generated using an external random number generator
and assigned to every new cloned state. The successor index is used as random
seed for all subsequent assignment decisions in the scope of the associated state.
Third, the already presented variable-assignment algorithm will be applied to
every target state resulting in different successor states. Finally, the source and
target buffers are swapped to delete all source states and to ”free” memory for
the next successor-generation step.

Fig. 5. The visualized successor generation process

1 2
Clone states] Create succ. values]

States States' Succ. States

10 Koester et al.

3.4 Algorithm

The main algorithm can be found in Algorithm [1| which represents a single GPU
kernel and the actual implementation of our N(z) function. It is designed in
a way that it can be directly converted into code with minor adjustments (see
. The kernel is launched with a group size that is a multiple of
the warp size in order to achieve high occupancy and to ensure that the segment
lookup works as intended. The term group index refers to the index of the i-th
thread inside the group.

The algorithm takes a state and a set of heuristics A7 for the different
variable types AT that can occur in the scope of the problem instance. We allocate
the required amount of shared memory, initialize the random seed based on the
successor index and iterate over all active variables sequentially. Lines 6-8 and
Algorithm [2] correspond to the FANG steps 1-4 in Lines 9-18 and
Algorithm [3| correspond to the FANG steps 5,6 and 9. Note that we also call the
user-defined heuristic in line 14 that can perform state-dependent adjustments
in the case of no assignment before deactivating the variable. Lines 20-31 reflect
the remaining FANG steps 7-10. Again, we execute user-defined code to enable
customized assignment logic. Finally, we store the updated random-number-
generator seed in the optimization state. Upcoming assignment steps will then
use the updated seed to generate "new” random numbers.

Note that there cannot be any race-conditions between different variable
assignments. Only one thread at a time executes the actual (no-)assignment,
activation or deactivation procedures. The thread barriers in line 17 and 33
ensure that the changes of these threads will be visible to all other threads in
the group after an assignment loop. This also guarantees that the influence of
a variable assignment can be taken into account by all other variables that are
assigned afterwards.

3.5 Assignment Order

The sequential assignment of all variables can lead to a bias, and thus, to un-
intended behavior of the general optimization system. Assume two variables A;
and Ay that have the following possibilities:

— A = {1} and
— o= {1},

with the constraint that V(A1) # V(A2). Consider a state in which both vari-
ables are active at the same time. Let us also assume, we assign both variables
sequentially in a pre-defined order, e.g. A\; before \s. Then, variable \s cannot
be assigned in any case to the value V(A2) = 1. Instead the variable assignment
will always yield V(A1) =1 and V(A2) = L (could not be assigned). This can be
seen as the intended behavior that was desired by the user. If not, we will also
have to change the order in which we assign variables from time to time. This
can be directly achieved by randomly permuting the order in which we iterate
over all active variables.

FANG

Algorithm 1: The FANG Algorithm

Input: state z, heuristics h” for the variables types A\”
1 sharedSegments := shared memory rating type[#ratings per group|;
2 sharedPrefixSum := shared memory int64[group size];
3 seed := SuccessorValue(z);
4 foreach) € active variables do
5 h := DetermineHeuristic(\ based on its type AT);
6 |R| := GetNumberOfPossibilities(h, x, A);
/* Algorithm
7 agg := RateAllPossibilities(x, h, sharedPrefixSum);
/* Algorithm
8 MapAllRatings(x, h, agg, sharedSegments, sharedPrefixSum);
/* Check for a possible assignment
9 globalRating := PrefixSumValue(last segment);
10 if globalRating < 1 then

11 if is first lane in warp then
/* No assignments possible

12 CouldNotAssign(h, x, A);
13 DeactivateVariable(\);
14 end

/* Wait for all threads...
15 group barrier;
16 continue;
17 end

/* Find decision value v
18 v, seed := DrawRandomNumber() € [0, ..., globalRating — 1];
/* Algorithm

19 segment := FindMatchingSegment(z, v,
20 sharedSegments, sharedPrefixSum);

/* Select possibility based on v
21 if is first warp then
22 p := segment * warp size + group index;
23 leftSum := prefixSumStorage(z)[p - 1];
24 rightSum := prefixSumStorage(z)[p];
25 if leftSum < v A rightSum < v then
26 Assign(h, z, A);
27 DeactivateVariable(\);
28 end
29 end

/* Wait for all threads...
30 group barrier;

/* Store updated successor value
31 if is first thread in group then

32 | SuccessorValue(s) := seed;

33 end

34 end

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

12 Koester et al.

Algorithm 2: RateAllPossibilities

Input: state x, heuristic h, shared memory
1 agg := CreateAggregator(h);
/* Iterate over all possibilities and aggregate information */
for i := group index; i < |R|; i += group size do
R; := ComputeRating(h, x, A, 1);
ratingStorage(x)[i] := Ry;
agg 1= Aggregate(agg, Ri);
end
/* Wait for all threads... */
7 group barrier;
/* Aggregate all thread-local aggregators */
8 agg := reduce (sharedPrefixSum, agg);
9 return agg;

S Uk W N

Algorithm 3: MapAllRatings

Input: state x, heuristic h, aggregator, shared memory
1 lowerBound := 0;
/* Iterate over ratings in the rating storage */
2 for i := group index; i < |R|; ¢ += group size do
3 initialRating := ratingStorage(z)[i];
4 M; := MapRating(h, initialRating, agg);
5 prefix := lowerBound + prefix sum (sharedPrefixSum, initialRating);
/* Store prefix sum, update lower bound, and update segment
lookup */

6 prefixSumStorage(x)[¢] := prefix;

7 lowerBound := PrefixSumValue(last thread in group);

8 if is first lane in warp then

9 sharedSegments [é] := lowerBound,

warp size

10 end

11 end
/* Wait for all threads... */

12 group barrier;

3.6 Duplicate States

A disadvantage of our parallel-processing method is the (potential) generation of
duplicate successor states from a single state. This is caused by our random selec-
tion process that chooses from different assignment possibilities. The probability
that this actually happens depends on the optimization domain, e.g. the number
of variables, individual constraints, the rating functionality and the number of
possibilities per assignment. This can be safely neglected in general, since the
probability that two identical successors will end up in the same state after n
successor generation steps is p™, where p € [0,...,1] refers to the probability
that a duplicate state emerges.

FANG 13

Algorithm 4: FindMatchingSegment

Input: state x, value v, shared memory
ResetSharedMemory ();
targetSegmentldx := -1;

/* Iterate over segment lookup in shared memory */
[R]
warp size
leftBoundary := sharedMemoryl[i - 1];

rightBoundary = sharedMemory[il;

3
4
5
6 match := leftBoundary < v A rightBoundary < wv;
7
8
9

[

for i := group index; i < | |; i += group size do

targetSegmentldx := reduce (sharedPrefixSum, match ? i : -1);
if target segment match then
| break;
10 end
11 end

3.7 Memory Consumption

Our algorithm requires a temporary array to store all custom rating values
and all prefix-sum information. The size of a single array entry in bytes is
|entry| = sizeof(rating type) + 8, since we store all accumulated mapped rat-
ings as unsigned 64bit integers to avoid overflows. Segment-lookup information
is stored in shared memory on the multiprocessor and does not require addi-
tional global memory. However, this array is required per state. Consequently,
the global memory consumption is

max (|R(Ao)l; - -, [R(An—1)]) - [X] - [entry], (1)

where |R();)| is the maximum number of possibilities of the variable A\; and | X|
is the number of states.

If we process multiple variables in parallel, we require several instances of
the array in memory to store all intermediate values. Hence, has to
be adapted in order to reflect the additional memory consumption:

(Z |R(/\i)|> | X[- [entryl, (2)

if we assume that all variables can be assigned in parallel. Since we disable paral-
lel variable assignment in our real-world applications, the memory consumption

is the one from

3.8 Implementation Details

We have implemented our algorithm in C++ using Cuda for all GPU kernels.
Variables are managed with the help of bit-sets in form of unsigned integers. They
also act as acceleration structures to skip over larger regions of inactive vari-
ables. Active variables are identified with the help of hardware bit-manipulation

14 Koester et al.

Load| |X| [|A[| |R| ||[1080 Ti| o ||Titan X| o [|i9 7940X| o ||R. 2700X| o

1024| 8 1224 2.20 1(0.09 3.04 [0.12 3.26 0.72 4.61 0.20
4488 3.34 [0.14 4.73 10.10 10.42 |1.16 14.95 |[1.21
9800 5.05 |0.33|| 7.66 |0.10|| 22.28 [1.43 31.06 |1.12
1224 6.97 [0.63|| 10.85 |0.44 11.06 |1.40 16.03 |0.91
4488 9.85 [0.89(] 17.13 |0.13 40.02 |1.29 56.18 |1.82
9800(|| 16.90 |1.22|| 28.49 [0.22 87.31 |1.81|| 121.75 |[2.64
1224 6.48 [0.57|| 11.54 |0.11 12.08 |1.44 16.73]0.49
4488 9.84 |[0.71|] 17.75 |0.12 40.18 |1.54 55.50 |1.40
9800(|| 16.94 |0.98|| 30.13 |0.10 85.09 [1.79|| 118.61 |2.25
1224||| 23.27 |1.47|| 44.33 |0.44 42.21 |1.79 60.32 |1.31
4488||| 37.78 |2.19|| 70.08 |0.69|| 154.70 |1.96|| 217.85 |[3.86
9800||| 66.30 |1.75|| 118.56 [0.53|| 336.196 (3.96|| 471.87 |6.80
Table 1. Influence of the number of states, the number of possibilities and the number
of variables on the overall run time. GPUs: GeForce GTX 1080 Ti and GeForce GTX
Titan X. CPUs: Intel Core i9 7940X and AMD Ryzen 7 2700X.

*

)

* X X * *

)

¥ K| K K K ¥ X ¥ ¥ X

=
o
e}
()}

% % P % % ool % x| %

* X X * *

*

instructions. For performance reasons, we typically leverage an XorShift* or an
XorShift1024* random-number generator [10]. They yield excellent results on
our common optimization domains and are not too expensive to compute in
every assignment step.

We further leverage template specialization to instantiate different assign-
ment kernels for each heuristic. Based on our experience, the majority of heuris-
tics use uniform control flow that does not diverge into too many distinct sec-
tions. This results in specialized GPU kernels for each variable kind that benefit
from the common uniform-control-flow pattern of each heuristic, which signif-
icantly reduces thread divergences. Moreover, we assign variables of different
types typically sequentially to ensure that decisions from previous categories are
visible to the heuristic of the next variable kind.

All memory buffers are allocated before the optimization process starts, since
the required memory size is already known during initialization. This avoids
unnecessary dynamic memory allocations during runtime. We use warp shuffles
to improve performance of all prefix-sum and reduction computations [16]. Note
that the loops in Algorithms [3] and [have thread divergences the way they
are described in the paper. In order to leverage group barriers inside reduce and
prefix-sum computations, these loop bounds are padded to avoid any divergences
in our implementation. Furthermore, accesses to shared memory in Algorithm
and to the prefix-sum storage in Algorithm [I]are modified to avoid out-of-bounds
accesses.

4 Evaluation

The evaluation section does not cover benchmarks of our N(x) algorithm in the
scope of different optimization systems using hard-to-reproduce and difficult to
understand optimization benchmarks. Instead, we evaluated the pure successor-
state generation process using a well known heuristic from the field of shortest-
path optimization. We consider a discrete 2D grid using the Manhattan distance,

FANG 15

Load| |X| [|A[| |R| ||[1080 Ti| o ||i9 7940X| o |

1 (1024| 8 (1224 2.20 |0.09 3.26 |0.72
8 O ol 1.88 |0.05 7.81 |0.11
16 O ol 1.82 |0.02|| 14.05 |0.15
1 *] * 14488 3.34 |0.14|| 10.42 |1.16
8 O o 3.40 |0.13|] 27.39 |0.47
16 O ol 2.75]0.02|| 50.11 |0.55
1 [4096| * |1224 6.48 |0.57|| 12.08 |1.44
8 O ol 6.26 |0.03|| 29.42 [0.28
16 oKX 6.26 |0.02|| 53.70 |0.44
1 ¥ * 14488 9.84 |0.71|| 40.18 |[1.54
8 O o 10.00 |0.89|| 104.61 |0.86
16 O o 9.91 |0.70|| 193.39 |0.98

Table 2. Influence of the compute load on the overall runtime. Please note that the
table is not meant to compare the theoretical computational power of GPUs against
CPUs. GPU: GeForce GTX 1080 Ti. CPU: Intel Core i9 7940X.

which is given by

d(p,q) = Z Ipi — qil. (3)

We iteratively move a point p to its neighboring cell according to the evaluation
result of the Manhattan distance. Hence, we consider neighboring grid cells in
2D as potential target points for the next step during heuristic evaluation. The
number of variables |\| indicates the number of points that we want to compute a
shortest path for. Consequently, every variable A; corresponds to a single current
point p and a corresponding goal point g that we want to reach. We choose ||
to be € {8,32} to demonstrate the effect of a small number of variables on the
overall run time. The number of possibilities |R| for every variable is derived
from the number of neighboring cells that we can move to in a single step. This
number can be computed using

Rl =j-j—1, (4)

where j refers to the number of neighboring cells in one dimension. Since we
are interested in large-scale optimization problems, we chose j >= 35 to have
some reasonable number of possibilities per variable (j € {35, 67,99}). Choosing
j to be smaller does not make any sense for a GPU-based optimizer since the
number of possibilities is too small. The number of states |X| is chosen to be
€ {1024, 4096} to create some workload. However, in reality |X| << |R|, which
also avoids duplicate states. For the sake of completeness, we also included per-
formance measurements of such cases in which |X| > |R|. In order to simulate
more- and less-expensive rating computations based on the Manhattan distance,
we introduce the load factor. It indicates the number of d(p, ¢) computations that
are performed using different goal positions ¢ inside a loop. As baseline we chose
load to be 1, which is the worst-case for our algorithm since the workload of
every single possibility evaluation is extremely small.

Our CPU implementation is derived from an object-oriented design, that
instantiates state objects encapsulating bit-fields of active variables. During suc-

16 Koester et al.

cessor generation, these states are cloned and are assigned in parallel to leverage
all cores. Schulz et al. [18] reported on many benchmarks in the field of discrete
optimization that GPU and CPU comparisons of algorithms often lack compa-
rability of the results. For this reason, our CPU version uses the same method
as shown in [Figure 2| to ensure that the solutions from all scenarios are identical
on the CPU and the GPU.

We used two GPUs from NVIDIA (a GeForce GTX 1080 Ti and a GeForce
GTX Titan X) and two CPUs: one from Intel (a Core i9 7940X) and one from
AMD (a Ryzen 7 2700X). Every performance measurement is the median execu-
tion time of 100 algorithm executions. Moreover, all variables \; were considered
to be active at the same time to increase the number of assignment steps per
state. The CPU code was compiled with msvec v19.16.27030 with all compiler op-
timizations and the AVX2 instruction set enabled. The Cuda code was compiled
with nvce v10.1.105 with all compiler optimizations enabled.

shows the main evaluation table demonstrating the impact of the
number of states, possibilities and variables on the overall run time. As previously
mentioned, the load factor was set to 1 in order to measure the worst case of our
method. On the GPU side, the 1080 Ti is roughly between 1.5x and 2x as fast
on all benchmarks compared to its older generation counterpart. Both GPUs
scale well with the overall complexity of the assignment problem. However, they
are heavily influenced by the number of active variables |A|, which are assigned
sequentially. This holds also true for the CPUs: doubling |A| roughly results in a
doubled execution time, which corresponds to the expected behavior. Fixing ||
and changing the number of possibilities |R| per variable results in a very good
scalability of our method on the GPUs: increasing the number of possibilities by
a factor of 8 (from 1224 to 9800) results in an increase of the run time of roughly
a factor of 4. This is caused by the parallel evaluation of many possibilities in
the scope of a single thread group, which is very work efficient. The CPUs have
a dramatic slowdown that is tightly coupled to |R| since they are processing the
assignment possibilities one by one. Fixing |A| and |R| while changing | X| yields
comparable results: The GPUs scale well when increasing the number of states,
whereas the CPUs register a bad scalability. This is due to the fact that the
GPU scheduler can choose between more thread groups to hide memory latency
and improve the overall occupancy.

shows the impact of the compute load on the run time of the as-
signment process. The measurements clearly show the great scalability of our
algorithm on the GPUs when it comes to more complex rating functions. A
larger computational load shifts the focus from a memory-dependent execution
to a computation-dependent execution. This affects the behavior of the GPU
scheduler, such that the scheduling overhead can be significantly reduced to
spent more time on the actual computations. Hence, an increased load does
cause any slowdowns on the GPUs. The CPU versions suffer dramatically from
the additional load, as their maximum occupancy was already reached.

The general speedup that can be achieved using our algorithm on the GPU
over traditional CPU versions yields speedups between 7.7x on problems with
small computation load and up to 27x using more workload depending on the

FANG 17

actual hardware. In general, our method provides great scalability that signifi-
cantly outperforms the CPU versions.

5 Conclusion

We present a new method to implement a generic and reusable N(x) function
for heuristic optimization systems. The neighborhood is explored using local
heuristics that rate all assignment possibilities of every variable. These ratings
are converted to probabilities which form the basis to find a decision value. The
value itself is resolved using a random-number generator that has a unique seed
for every optimization state. The decision is mapped to a variable-assignment
possibility using specially designed lookup tables that can be stored in fast on-
chip-memory.

Our approach scales very well with the complexity/cost of the rating func-
tions. It also scales excellently with the number of states and assignment possi-
bilities per variable. For instance, an assignment of 32 variables that are active
at the same time in 1024 states with 4488 possibilities each require only ~ 10
milliseconds on current hardware to complete. Comparing the performance to
traditional N (z) implementations on the CPU yields significant speedups of up
to 27x on our evaluation scenarios. Moreover, it allows the design and imple-
mentation of fully GPU-based heuristic-driven optimization systems without the
need to perform neighbor search or successor-state generation on the CPU. This
makes it a perfect extension for every modern heuristic-based optimizer.

Probably the main downside of our approach is the high memory consump-
tion. We require a single array entry of at least 12 bytes in memory for every
assignment possibility in every state that should be processed in parallel. How-
ever, we do not believe that this is a major limitation in practice since large
optimization problems require huge amounts of memory anyway.

In the future we would like to extend the concept to support parallel assign-
ment of variables. This would require specific compiler extensions to automat-
ically determine whether or not some variables can be assigned in parallel. In
addition, we want to experiment with locally cached ratings in shared memory,
since the recent trend has shown increasing sizes of on-chip-memory.

Acknowledgments

The authors would like to thank Wladimir Panfilenko and Thomas Schmeyer for
their suggestions and feedback regarding our method. Furthermore, we would
like to thank Gian-Luca Kiefer for additional feedback on the paper. Special
thanks to Wladimir at this point for adding the concept of integer-based bit sets
for active variables in a single state. This reduces global-memory consumption
and improves performance of searching for active variables.

18

Koester et al.

References

1.

10.
11.

12.

13.

14.

15.

16.
17.
18.

19.

Abdelkafi, O., Chebil, K., Khemakhem, M.: Parallel local search on GPU and CPU
with OpenCL Language. In: Proceedings of the first international conference on
Reasoning and Optimization in Information Systems (09 2013)

. Campeotto, F., Dovier, A., Fioretto, F., Pontelli, E.: A GPU Implementation of

Large Neighborhood Search for Solving Constraint Optimization Problems. In:
Proceedings of the Twenty-first European Conference on Artificial Intelligence
2014

gamp)eotto, F., Dal Palu, A., Dovier, A., Fioretto, F., Pontelli, E.: Exploring the
Use of GPUs in Constraint Solving. In: Practical Aspects of Declarative Languages
2014

%‘ocac)ci7 F., Laburthe, F., Lodi, A.: Local Search and Constraint Programming.
Springer US (2004)

Ghorpade, S., Kamalapur, S.: Solution Level Parallelization of Local Search Meta-
heuristic Algorithm on GPU. In: International Journal of Computer Science and
Mobile Computing (2014)

Koster, M., Leila, R., Hack, S., Membarth, R., Slusallek, P.: Code Refinement of
Stencil Codes. Parallel Processing Letters (PPL) 24 (2014)

Luong, T.V., Loukil, L., Melab, N., Talbi, E.: A GPU-based iterated tabu search
for solving the quadratic 3-dimensional assignment problem. In: ACS/IEEE Inter-
national Conference on Computer Systems and Applications (AICCSA) (2010)
Luong, T.V., Melab, N., Talbi, E.G.: Large Neighborhood Local Search Optimiza-
tion on Graphics Processing Units. In: Workshop on Large-Scale Parallel Process-
ing (LSPP) in Conjunction with the International Parallel & Distributed Process-
ing Symposium (IPDPS) (2010)

Luong, T.V., Melab, N., Talbi, E.G.: Neighborhood Structures for GPU-based
Local Search Algorithms. Parallel Processing Letters (2010)

Marsaglia, G.: Xorshift RNGs. Journal of Statistical Software, Articles 8 (2003)
Melab, N., Luong, T.V., Boufaras, K., Talbi, E.G.: ParadisEO-MO-GPU: a frame-
work for parallel GPU-based local search metaheuristics. In: 11th International
Work-Conference on Artificial Neural Networks (2011)

Ming Lam, Y., Hung Tsoi, K., Luk, W.: Parallel neighbourhood search on many-
core platforms. International Journal of Computational Science and Engineering 8
2013

1(\/[0ha)mmad Harun Rashid, L.T.: Parallel Combinatorial Optimization Heuristics
with GPUs. Advances in Science, Technology and Engineering Systems Journal 3
2018)

1(\/[unawar, A., Wahib, M., Munetomo, M., Akama, K.: Hybrid of genetic algorithm
and local search to solve MAX-SAT problem using nVidia CUDA framework. Ge-
netic Programming and Evolvable Machines (2009)

Novoa, C., Qasem, A., Chaparala, A.: A SIMD Tabu Search Implementation for
Solving the Quadratic Assignment Problem with GPU Acceleration. In: Proceed-
ings of the 2015 XSEDE Conference: Scientific Advancements Enabled by En-
hanced Cyberinfrastructure (2015)

NVIDIA: Faster Parallel Reductions on Kepler (2014)

NVIDIA: CUDA C Programming Guide v10 (2019)

Schulz, C., Hasle, G., Brodtkorb, A.R., Hagen, R., T.: GPU computing in dis-
crete optimization. Part II: Survey focused on routing problems. EURO Journal
on Transportation and Logistics (2013)

Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley Publishing
(2009)

	FANG: Fast and Efficient Successor-State Generation for Heuristic Optimization on GPUs

