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Abstract

As Machine Translation (MT) quality continues to improve, more and more
translators switch from traditional translation from scratch to Post-Editing (PE)
of MT output, which has been shown to save time and reduce errors. Instead
of mainly generating text, translators are now asked to correct errors within
otherwise helpful translation proposals, where repetitive MT errors make the
process tiresome, while hard-to-spot errors make PE a cognitively demanding
activity. Our contribution is three-fold: first, we explore whether interaction
modalities other than mouse and keyboard could well support PE by creating
and testing the MMPE translation environment. MMPE allows translators to
cross out or hand-write text, drag and drop words for reordering, use spoken
commands or hand gestures to manipulate text, or to combine any of these
input modalities. Second, our interviews revealed that translators see value in
automatically receiving additional translation support when a high Cognitive
Load (CL) is detected during PE. We therefore developed a sensor framework
using a wide range of physiological and behavioral data to estimate perceived
CL and tested it in three studies, showing that multi-modal, eye, heart, and
skin measures can be used to make translation environments cognition-aware.
Third, we present two multi-encoder Transformer architectures for Automatic
Post-Editing (APE) and discuss how these can adapt MT output to a domain and
thereby avoid correcting repetitive MT errors.
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Zusammenfassung

Angesichts der stetig steigenden Qualität maschineller Übersetzungssysteme
(MÜ) post-editieren (PE) immer mehr Übersetzer die MÜ-Ausgabe, was im Ver-
gleich zur herkömmlichen Übersetzung Zeit spart und Fehler reduziert. Anstatt
primär Text zu generieren, müssen Übersetzer nun Fehler in ansonsten hilfre-
ichen Übersetzungsvorschlägen korrigieren. Dennoch bleibt die Arbeit durch
wiederkehrende MÜ-Fehler mühsam und schwer zu erkennende Fehler fordern
die Übersetzer kognitiv. Wir tragen auf drei Ebenen zur Verbesserung des PE
bei: Erstens untersuchen wir, ob andere Interaktionsmodalitäten als Maus und
Tastatur das PE unterstützen können, indem wir die Übersetzungsumgebung
MMPE entwickeln und testen. MMPE ermöglicht es, Text handschriftlich, per
Sprache oder über Handgesten zu verändern, Wörter per Drag & Drop neu
anzuordnen oder all diese Eingabemodalitäten zu kombinieren. Zweitens stellen
wir ein Sensor-Framework vor, das eine Vielzahl physiologischer und verhaltens-
bezogener Messwerte verwendet, um die kognitive Last (KL) abzuschätzen. In
drei Studien konnten wir zeigen, dass multimodale Messung von Augen-, Herz-
und Hautmerkmalen verwendet werden kann, um Übersetzungsumgebungen
an die KL der Übersetzer anzupassen. Drittens stellen wir zwei Multi-Encoder-
Transformer-Architekturen für das automatische Post-Editieren (APE) vor und
erörtern, wie diese die MÜ-Ausgabe an eine Domäne anpassen und dadurch die
Korrektur von sich wiederholenden MÜ-Fehlern vermeiden können.
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Part I

Introduction and Background
This initial part introduces the topic of post-editing machine trans-
lated text and motivates the research questions addressed in this dis-
sertation (chapter 1). Afterwards, chapter 2 presents the background
and related works that are relevant for the remaining parts.
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Chapter 1
Introduction

This chapter introduces the task of Post-Editing (PE), which this thesis addresses
by considering and conducting research at the intersection of Machine Transla-
tion (MT) and Human-Computer Interaction (HCI). We then focus on current
problems in PE MT and thereby motivate our work. Afterwards, our main re-
search questions and the approaches used to tackle these are presented. In the
end, we provide an overview of the main contributions this thesis makes, and
present the thesis structure, linking individual chapters to the research questions.

Parts of this chapter are based on Herbig et al. (2019b).

1.1 Post-Editing at the Intersection of Machine Transla-
tion and Human-Computer Interaction

Traditional translation from scratch dates back thousands of years, when tribes
had to communicate with each other, first verbally through interpreters, then
also in written form through translators. Fully automatic language translation is
therefore a long anticipated goal pushed early on through pioneers like Warren
Weaver (Weaver, 1953). The science fiction literature also presented a variety of
solutions to communicate across languages, e.g., the talking robot C-3PO in Star
Wars or the Babel Fish in Douglas Adams’ Hitchhikers’ Guide to the Galaxy. Even
though the problem is far from being solved, Machine Translation generated by
computers is nowadays integrated into several end-user applications, ranging
from translating posts on social media (see Figure 1.1) to slides in Power Point
(see Figure 1.2).

These automatic translations help to handle the the vast amount of text that is
being produced every day in an interconnected world; the market size for global
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(a) English original post. (b) German translated post.

Figure 1.1: Machine Translation in social media, here Instagram post by borisher-
rmannracing from 30th of December 2020.

(a) Original slide in English. (b) Translated slide in German.

Figure 1.2: Machine Translation in PowerPoint.

language services has doubled in size over the last 10 years1. For the social media
example, it is often sufficient to grasp the gist of what is being said without
understanding every detail, which is a requirement met by most modern-day
MT in frequent language pairs. In other cases, e.g., the Power Point example
above, a higher level of quality is required and thus humans need to be involved
to guarantee output that is of publishable quality. Nevertheless, MT can serve as
a starting point that is then “post-edited” towards the final translation.

This Post-Editing process of Machine Translation output is what our work focuses
on. In traditional translation, translators gradually create the target text by
manually translating the source text. In PE, the source text is first given to
a MT system to produce a translation proposal. The human translator then
considers both the original source text and the MT’s proposal to identify and

1From 23.5 billion USD in 2009 to 49.6 billion USD in 2019 according to Statista , see
https://www.statista.com/statistics/257656/size-of-the-global-language-
services-market/
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correct mistakes, as well as select, adapt, and recombine useful text fragments.
Figure 1.3 shows a comparison between traditional translation from scratch and
PE. While the strong improvements in MT have only been achieved in recent
years, the concept of PE dates back long time, with books being published on the
topic as early as 1982 (Lawson, 1982).

(a) Translation from scratch.

(b) PE of MT.

Figure 1.3: Traditional translation from scratch vs. PE of MT (icons form Freepik
by flaticons.com).

The motivation for PE is that editing the potentially erroneous output of transla-
tion technologies may substantially boost productivity compared to a manual
translation from scratch and that it can even reduce errors (Green et al., 2013).
PE thus combines the advantages of both Artificial Intelligence (AI) and human
intelligence: While the AI is good at quickly proposing draft translations of
nowadays often high quality, a human with high proficiency in source and target
language is needed to ensure that the meaning is presented in translation, to
analyze lexical and semantic nuances, and to understand the segment of text
in a large (con)text, including the target audience, their cultural background
etc. That way, the human can be inspired by the machine, but uses their expert
knowledge in combination with human creativity to improve the MT proposal.
Thus, the task changes from mostly text production to comparing and adapting
machine-generated proposals, or put differently, from control to supervision. As
it will probably take a long time until machines are able to solve translation for
every possible domain and every language pair without the help of humans,
researching better synergies between human and AI translators is very important.

Fruitful human-machine collaboration in translation was described by Martin
Kay, who wrote a visionary paper on “The Proper Place of Men and Machines in
Language Translation” already back in 1980 (later republished in Kay (1997)):
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“A computer is a device that can be used to magnify human produc-
tivity. Properly used, it does not dehumanize by imposing its own
Orwellian stamp on the products of the human spirit and the dignity
of human labor but, by taking over what is mechanical and routine,
it frees human beings for what is essentially human. Translation is
a fine and exacting art, but there is much about it that is mechanical
and routine and, if this were given over to a machine, the productivity
of the translator would not only be magnified but his work would
become more rewarding, more exciting, more human.”

1.2 Motivation & Problem Statement

Kay’s vision of human-machine collaboration has become a reality in many re-
gards, yielding productivity gains in several translation domains and across levels
of expertise (Aranberri et al., 2014; Läubli et al., 2013; Zampieri and Vela, 2014a),
and also reducing errors (Green et al., 2013). According to a large-scale study
involving more than 7000 translators and interpreters conducted by Common
Sense Advisory (CSA), a major translation think tank, around 34% of translators
offer PE of MT (Pielmeier and O’Mara, 2010).

Even though PE becomes more widespread mainly due to productivity gains, its
popularity among translators is often rather low, as instead of Kay’s suggestion
of work becoming “more rewarding” as the machine is taking over “mechanical
and routine” tasks, translators, who used to feel like creative writers now feel
degraded to “assembly line workers” (LeBlanc, 2017), fixing often repetitive
errors of the MT (Guerberof-Arenas, 2013; O’Brien and Moorkens, 2014). A
reason could be the strong focus of MT research on improving the MT itself
that ignores the fact that human translators still have to work with the output
of systems as long as fully reliable automatic translation is not possible. This
mismatch was also outlined by Vieira and Specia (2011), stating that while MT
research is growing, the “integration with human translation, however, does not
seem to have advanced in the same proportions”. One should also note that
MT systems are trained to produce output most similar to a provided reference
translation, thereby aiming for a perfect translation, which might not necessarily
be the translation that is best suited when humans post-edit it.

How can these tedious aspects of PE be mitigated, such that translators can indeed
focus on the more exciting and rewarding aspects that Kay (1997) envisioned?

One possibility is to better reflect the PE process and its particularities in so called
Computer-Aided Translation (CAT) tools, which are used by most professional
translators in their day-to-day work (Van den Bergh et al., 2015). CAT tools
minimally show a text window for the source text and one supporting text
editing operations for the target, which can initially be either empty (translation
from scratch), or populated with a translation proposal (PE). Usually however,

6



CAT tools offer a wide range of additional features supporting the translation
process and maximizing the potential of these workbenches is thus one of the
priorities for both the research community and industry (Mesa-Lao, 2012).

Naturally, PE not only changes the interaction patterns within CAT environments,
but also the cognitive dimension of translation. It requires awareness not only
of the sentence in the original language, but also of the error-prone MT output
or possibly even multiple such outputs, Translation Memory (TM) matches, the
surrounding context, the text’s domain and its terminology, the target audience
and their cultural background, consistency within translation projects, also with
colleagues, etc. “Too much information, like too little information, can lead to
confusion, stress and unnecessary effort on the part of readers” (Byrne, 2006).
Thus, techniques to capture the cognitive dimension of PE are required, to ensure
that the variety of translation aids does support but not overwhelm the human.

Apart from improving the interface itself, one can instead focus on the MT and try
to adapt it to a domain, customer, or the translator: Except for actual errors, the
MT can perform the same lexical or stylistic choices over and over again, which
the current translator might disagree with, thus requiring similar modifications
throughout the text and inducing a feeling of assembly line work. As retraining a
full MT engine requires lots of data, better approaches to learn from post-edits
might improve the overall experience.

1.3 Research Questions

The overarching research hypothesis that this thesis addresses can be summarized
as follows:

The PE process can be better supported by moving away from con-
ventional mouse and keyboard-based interaction towards a novel
multi-modal CAT environment, which further considers Cognitive
Load (CL) and learns from previous post-edits to avoid correct-
ing repetitive mistakes, thereby making a complex and cognitively
challenging task easier.

To explore this hypothesis, we divide it into the following research questions:

RQ1 Can (combinations of) novel interaction modalities like touch, digital pen,
or speech enhance common PE operations like insertions, deletions, replace-
ments, or reorderings?

RQ2 Can multi-modal combinations of sensing devices be used to better estimate
CL during PE, with the overall goal of reducing the cognitive demand
imposed on translators?
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RQ3 Can we learn from post-edits to adapt the MT output to certain domains or
translators, such that subsequent PE becomes quicker and less repetitive?

Since translators in PE do not produce as much text as they did in translation
from scratch, but instead identify and correct errors in MT output, the question
arises whether traditional mouse and keyboard input is still the most suitable
interaction modality. Thus, RQ1 explores if PE can be improved through the
use of corrective speech commands, handwriting as done in copy editing, finger
touch as known from tablets, or combinations thereof. As certain operations in
PE like deletions or reorderings might be better supported by some modalities
than by others, we further investigate in which scenarios which modality can
provide a suitable alternative to mouse and keyboard. This RQ is approached in
a user-centered fashion, initially asking professional translators how they would
envision such a multi-modal environment, then implementing a prototype based
on this initial requirements analysis and testing it with professional translators.
Finally, the feedback from the prototype evaluation was used to further improve
the system.

Apart from explicit multi-modal input to edit MT output (RQ1), RQ2 addresses
implicit multi-modal sensor input to better model CL of translators during PE.
Here, combinations of eye, skin, heart, typing, and other indicators are used
to explore how closely CL during PE can be predicted. This forms the basis
of cognition-aware CAT environments that consider the user’s current state.
Furthermore, better detection of CL can allow a more accurate understanding of
the drivers of CL during PE.

Finally, RQ3 addresses the problem that MT systems only learn input-output
mappings between source text and final translations, thereby ignoring the manual
effort that post-editors apply to improve MT output. Training full MT systems
not only requires a lot of time, but especially data, so adding a few post-edited
segments and retraining the MT usually does not sway the weights in a big MT
model, such that it keeps making the same mistakes or wrong stylistic choices,
leading to repetitive mistakes and a feeling of assembly line work. In RQ3, the
concept of Automatic Post-Editing (APE) is therefore addressed. APE aims to
learn repetitive mistakes or paraphrasing from post-edits, to then automatically
correct such errors of the MT before showing the output to the human translator,
who should then be free to focus on the more exciting and rewarding parts of PE.

1.4 Approach & Methods

For exploring whether explicit multi-modal input facilitates common PE opera-
tions (RQ1), we start our research with an elicitation study (Vatavu and Wobbrock,
2015), asking professional translators which interaction modalities they believe
to be suitable for which PE tasks. Since elicitation studies do not bias participants
by any pre-defined concepts, mock-ups, or prototypes, it was shown that these
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kinds of studies lead to natural interfaces with a high level of immediate usage
(Wobbrock et al., 2005). We afterwards iteratively prototype the findings of our
study into a fully usable CAT tool focusing on multi-modal input, which we
realease open-source. In a further experiment with professional translators using
our prototype, we test every modality for every PE operation in a structured
way to capture timing and ratings, but also conduct semi-structured interviews
(Longhurst, 2003) to capture subjective feedback. Thus, RQ1 is addressed with
an exploratory, user-centered design process (Vredenburg et al., 2002), involving
users early on and continuously learning from their feedback.

For understanding how the cognitive dimension of PE can be better modeled
(RQ2), we start by interviewing professional translators how the PE process could
be improved by adapting to estimated CL. We then build a sensor framework,
combining input from a variety of modalities, that allows capturing potentially
relevant features of CL. With it, we conduct three data capturing experiments
with different users (students and professionals) and domains (PE and e-learning
to analyze transferability). Based on the captured data, predictive models are
trained and correlations are investigated to explore to which degree CL can be
estimated with our framework. Finally, we conduct a user acceptance study,
asking potential users of such cognition-aware systems how big assumed benefits
would need to be in order to share data of certain sensors (Acquisti et al., 2013).

For RQ3, we use publicly available data of post-edits and explore how these can
be best used to improve MT output. As designing such APE systems requires
many reiterations and explorations on thousands of sentences, a human evalua-
tion within the design process is unfortunately not feasible. Therefore, we rely
on automatic quality metrics. Our evaluation metric strictly follows that of a
shared task including publicly available datasets (Chatterjee et al., 2018), thereby
allowing a fair comparison to related works. We further discuss the implications
of having APE systems in real PE settings by surveying the APE literature.

1.5 Contributions

This thesis provides contributions at the intersection of Human-Computer In-
teraction (HCI) and Natural Language Processing (NLP), and aims to combine
recent advances in both fields to push the boundaries how PE is nowadays con-
ducted. Our contributions can be summarized into three sub-fields: explicit
multi-modal input for PE, modeling the cognitive dimension of PE through im-
plicit multi-modal sensor input, and learning from post-edits in the form of APE,
to reduce manual effort and especially repetitive corrections.

Regarding explicit multi-modal input for PE, we explore the design space of modal-
ities which are intuitively appropriate for which operation, and how the op-
erations (e.g., reorder) should be performed with the various modalities, by
conducting an elicitation study with professional translators. Furthermore, we
present findings from an interview on hardware setup and interface design of
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CAT tools. Guided by these theoretical contributions, we provide the technical
contribution of a prototype implementing a broad range of interaction modalities
for PE operations, which was iteratively improved based on user feedback. Fi-
nally, a study investigating the different modalities for the different operations
in a structured test, provides guidance on which modalities CAT tools should
focus on and what the advantages and disadvantages of the different interaction
modalities are.

Regarding the cognitive dimension of PE through implicit multi-modal sensor input,
we contribute a study on professional translator’s ideas on how interfaces can
adapt to measured CL or how MT systems can be improved based on measured
CL. As a technical contribution, we provide a unified framework accessing a
broad range of CL measures from different sensor modalities. Our data analysis
framework also provides detailed analysis possibilities, including a variety of
pre-processing, ML-based CL prediction model training and visualization steps.
This framework was used in different stages of development in three studies to
explore how well CL can be estimated based on this variety of sensor inputs. Last,
we contribute users’ perceptions on sharing sensor data for the purpose of CL
adaptations, which, in combination with the findings of which sensor modalities
work well for the task, can guide practical implementations of CL measurement.

Regarding learning from post-edits in the form of APE, we contribute two model
architectures combining both source text and MT proposal to reduce errors in the
latter, and analyze them on publicly available datasets. We further theoretically
discuss how such systems could be applied to support translators by learning
from limited amount of data, and adapting to stylistic changes by paraphrasing.

1.6 Outline of this Thesis

The remainder of the thesis is structured as shown in Figure 1.4.

Chapter 2 presents the background and related work and thereby provides a
solid foundation for the presented research. First, we explain the different types
of Machine Translation and focus on their differences for the PE process. Then
we discuss how this MT output can be used for PE, what the PE workflow looks
like, how PE impacts effort, time and quality, and what translators think about
PE in general. Afterwards, we look at CAT environments, what features they
offer, what their limitations are, and especially focus on the degree to which
multi-modal input has already been explored in CAT tools. Afterwards, we shift
to the topic of user modeling, where we particularly focus on the concept of
Cognitive Load and approaches to measure and adapt to CL both within and
outside of the translation domain. Finally, we talk about Automatic Post-Editing,
its basic assumptions, the different architectures, and to which degree they have
already been integrated into CAT tools.
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Figure 1.4: Thesis structure relating chapters and parts to research questions and
the research hypothesis.

Part II then focuses on RQ1, investigating how explicit multi-modal interactions
can facilitate PE of MT. Chapter 3 starts with an elicitation study, to understand
which interactions with which modalities professional translators find intuitive
for which tasks. Chapter 4 then presents the prototype built upon these ini-
tial findings, and evaluates it with professional translators to ascertain which
implemented modality is suitable for which PE operation. Furthermore, a lot
of ideas on how the prototype can be improved are discussed, which are then
implemented and presented in chapter 5. The same chapter also describes further
research conducted with the prototype: first our investigations of mid-air hand
gestures during PE, followed by a study on the helpfulness on word-level Quality
Estimation (QE) for PE of MT.

Part III focuses on RQ2, the question of how implicit multi-modal sensor input
can be leveraged to estimate and adapt to CL. Chapter 6 starts by presenting
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findings from an interview with professional translators on how CAT tools could
be improved based on estimated CL, which sets the overarching goal towards
which the other chapters contribute. Chapter 7 then presents the multi-modal CL
estimation framework that we have built to conduct studies, which combines a
wide set of features from different modalities to understand the users’ cognitive
states. This framework is then explored in 3 different studies in chapter 8: Starting
with a smaller set of CL measures, an initial study is conducted with translation
students. After that, the full framework is explored with professional translators,
and finally, to also test it in a completely different domain, it is evaluated in
the context of e-learning with computer science students. Based on these three
studies, we learn how well which CL measures perform, and which degree of
accuracy can be reached with a multi-modal approach. Finally, chapter 9 presents
an online study to investigate which of the various measures are considered
potentially invasive and privacy-critical, and therefore reach higher or lower user
acceptance in practical applications.

RQ3 is then addressed in Part IV, where we first present two APE architectures
proposed for learning from post-edits to avoid repetitive mistakes (see chapter 10
and chapter 11), and then theoretically discuss how APE can be integrated in the
CAT process to really leverage its potential for efficient PE (see chapter 12).

Finally, Part V gives an overall conclusion of this thesis and summarizes the main
take-aways. We also discuss various opportunities for future work that arise
from the findings of this thesis.
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Chapter 2
Background and Related Work

This chapter reviews the literature most relevant to this thesis. We first discuss
different types of machine translation and especially focus on overall quality
and common errors. Afterwards, the post-editing process is discussed in detail,
including the involved effort, achieved time savings, resulting text quality, and
translators’ perceptions in comparison to traditional translation from scratch.
We then review the computer-aided translation domain, showcasing common
features and available software tools, and particularly focus on multi-modal
input possibilities. After that, we switch towards the concept of cognitive load
and corresponding measuring techniques, where we again focus on multi-modal
techniques. Finally, automatic approaches to post-editing are reviewed and we
discuss how these can be leveraged to avoid repetitive mistakes. We conclude by
summarizing the research gaps and discussing how this thesis aims to fill them.

2.1 Machine Translation

“Machine Translation is a sub-field of computational linguistics that aims to
automatically translate text from one language to another using a computing
device” (Garg and Agarwal, 2019). Even though this definition is very simple, the
complexity of natural languages makes implementing a high-quality MT system
very challenging. The knowledge required encompasses not only syntax and
semantics, but also grammar, culture, context, commonsense knowledge, idioms,
etc. in both languages, thus, requiring years of study for humans and making
it complex for computational linguists to create high-quality MT systems. After
briefly reviewing the history of MT, we discuss the main MT paradigms, present
human and automatic MT evaluation methods, and discuss the level of quality
achieved by the different MT paradigms.
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2.1.1 History

Hutchins (2007) summarizes the history of machine translation and distinguishes
two kinds of demands: machine translation for assimilation, and machine trans-
lation for dissemination, where the former can be “imperfect, lexically awkward
and stylistically crude”, while the latter should produce “publishable-quality
translation”. Whereas early approaches focused on MT for assimilation, later
approaches tend to work towards MT for dissemination.

An early pioneer of MT, named Petr Troyanskii, approached the USSR Academy
of Sciences already in 1939 and proposed to work on machine translation, how-
ever, after years of fruitless discussion the contact was lost again (Hutchins
and Lovtskii, 2000). Other early proposals include Warren Weaver’s famous
memorandum from 1949, where he proposed ideas to move away from limited
word-by-word translation schemes (Hutchins, 2000; Weaver, 1999). Three years
later, in 1952, Weaver’s and others’ ideas were discussed at the first MT con-
ference at MIT organized by Yehoshua Bar-Hillel (Hutchins, 2007). Back then,
the view was that “full automation of good quality translation was a virtual
impossibility, and that human intervention either before or after computer pro-
cesses (known from the beginning as pre- and post-editing respectively) would
be essential” (Hutchins, 2007). The first journal on the topic also appeared in 1953
under the common term “Mechanical Translation” (Hutchins, 2007).

MT research grew and showed some improvements, however, in 1966 a major
setback happened: The Automatic Language Processing Advisory Committee
(1966) (ALPAC) examined the status quo and found that MT is slower, less
accurate, leading to lower comprehension and at the same time being more costly
than human translation, concluding that “there is no immediate or predictable
prospect of useful machine translation”. Instead, the ALPAC recommended to
focus on basic research in computational linguistics and to develop machine aids
for translators. This ended most of MT research for over a decade (Hutchins,
2007) until the field gained popularity again. In terms of approaches to MT,
earlier research focused on Rule-Based Machine Translation (RBMT), followed
by example-based approaches in the 1980s, Statistical Machine Translation (SMT)
in late 1980s (due to an increase in computational power), and the shift to deep
learning after gaining popularity in the 2010s (Garg and Agarwal, 2019). We will
discuss these paradigms in more detail in the following sections.

2.1.2 Rule-Based & Example-Based Machine Translation

Rule-Based Machine Translation (RBMT) was the main research focus in the
1970s (Garg and Agarwal, 2019). As the name suggests, RBMT is driven by a set
of rules that are used to parse the input text and generate output text. Overall,
there are three types of RBMT (Garg and Agarwal, 2019): direct approaches,
transfer-based approaches, and interlingual approaches. Direct systems map
input to output directly, while transfer based approaches analyze the source
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regarding morphology and syntax to translate the sentence. Simply speaking,
these approaches parse the structure of the input sentence, look up appropriate
rules which transform the structure into the target language, then use a dictionary
to translate each word, and potentially apply post-processing to adapt word
forms etc. The last approach, interlingual RBMT, instead transforms the source
into a language-independent intermediate representation, which is then used to
generate the target.

RBMT has several advantages: On the one hand, it only requires dictionaries and
rules, but no big corpora of parallel text. If rules exist for rare sentences, these can
also be handled well, while statistical or neural approaches often have problems
with infrequent phenomena. Furthermore, rules can be used independent of
the text domain, the source analysis for a certain language is independent of
different target languages, and similarly the generation of target sentences from
an intermediate representation is independent of different source languages.
One can even start supporting new languages by adapting rules from similar
languages. Due to the rules, the explainability of RBMT is also very high.

However, the generation of rules requires detailed linguistic analysis and lots of
manual effort. It is also complex to write rules that work well for ambiguous or
idiomatic expressions, and the stronger the structural differences of languages,
the more complicated the creation of rules becomes (Garg and Agarwal, 2019).

Since this is especially true for English and Japanese, Nagao (1984) proposed a
different approach to “mechanical translation”. The idea arose from the human
translation process: Humans do not perform deep linguistic analyses before
translation, but instead decompose the sentence into fragments, translate those
individually, and compose the translated fragments into an overall sentence. The
translation of each fragment can be done by analogy, so the proposed example-
based MT can be seen as a form of case-based reasoning, where known solutions
to (sub-)problems are reused to solve new problems. Nagao thus proposed to
learn word and sentence mappings from data, instead of manually creating and
applying rules.

2.1.3 Statistical Machine Translation

Statistical Machine Translation (SMT) takes the idea of learning from corpora
instead of curating rules to the next stage. SMT considers the translation problem
as a purely statistical problem, where the goal is to find the sentence T in the
target language, that has the highest probability of being the translation for a
sentence S in the source language, thus maximizing P (T |S). Using Bayes law, this
can rewritten as argmax

T
P (T |S) = argmax

T
P (T ) ∗ P (S|T ) where P (T ) is referred

to as the language model, while P (S|T ) is referred to as the translation model.
As argued by Brown et al. (1993), pioneering in the field of SMT, dividing the
problem into the inverse (source given target) and language model might seem
unintuitive, but has advantages compared to solving P (T |S) directly: P (S|T )
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can concentrate on well-formed sentences only, as P (T ) assigns low probabilities
to ill-formed ones, thereby making the outcome of P (S|T ) irrelevant for these
cases. Thus, applying Bayes law simplifies the task of the translation model
P (S|T ) compared to P (T |S) but requires an additional language model P (T ).

Language models need only output the probability of a word sequence, which
can be broken down to the probability of a certain word occurring after previous
words. When fixing the size of the considered context, language models can thus
be as simple as counting how often a word appears after a certain sequence to get
a maximum likelihood estimate (Garg and Agarwal, 2019), however, nowadays
much better approaches to language modeling using Transformer-based neural
networks like BERT (Devlin et al., 2019) have been proposed. Even when using
language models to focus on well-formed sentences, the search space remains
huge, thus, SMT approaches can leverage the source text and heuristics to guide
the search, with the usual trade-off that a wider exploration of the search space
costs time but can improve the quality.

SMT started with word-based approaches, but later shifted to phrase-based
approaches (Garg and Agarwal, 2019): Word-based approaches like the IBM
models (Brown et al., 1988, 1990, 1993) use individual words as the unit of
translation and therefore cannot understand words within their surrounding
context, often resulting in a poor lexical choice. Therefore, Och et al. (1999)
introduced Phrase-Based Statistical Machine Translation (PBSMT), which uses
phrases as the basic translation unit. In contrast to word-based approaches, that
rely on simple alignments (i.e., a mapping which source word corresponds to
which target word), phrase-based approaches align phrases of M source words to
N target words. This allows a translation in context, where each pair of phrases
in source and target has a probability of the one being the translation of the other,
that can be learned from a large bilingual corpus (Garg and Agarwal, 2019). Until
2016, SMT was still the main paradigm used in the popular Google Translator2.

Compared to RBMT, SMT does not involve creating and maintaining rules based
on linguistic knowledge, but instead learns these patterns automatically from
data. Furthermore, the language model ensures that the output sounds rather
fluent. However, the dependence on a large corpus is also a disadvantage, as it
needs to be created and must match the text domain. Other problems arise from
the statistical procedure, e.g., proper names might be overwritten by more likely
translations in the training corpus.

2.1.4 Neural Machine Translation

One of the first papers proposing to solely rely on neural networks without
any component from SMT was Kalchbrenner and Blunsom (2013). In the fol-
lowing years, the percentage of Neural Machine Translation (NMT) approaches

2https://www.blog.google/products/translate/found-translation-more-
accurate-fluent-sentences-google-translate/
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submitted to the yearly shared task hosted by the Conference/Workshop on
Machine Translation (WMT) increased until becoming the de-facto standard.
Most approaches follow a so-called encoder-decoder architecture, where in early
RNN-based versions of this (see below), the encoder reads each input token one
word at a time to produce an intermediate representation, which is then used by
the decoder to generate the target translation.

For neural networks to work well, words need to be encoded into vector space.
To avoid the curse of dimensionality and very sparse representations that would
occur when simply encoding each word in the vocabulary as a one-hot vector,
the idea arose to model all words in a smaller dimensional but dense vector
space, and learning to group similar words next to each other (Bengio et al.,
2003; Mikolov et al., 2013). The grouping of similar words within such word
embeddings help to predict suitable translations for so far unseen data that is
similar to other data in the embedding space. Word embeddings also allow
vector arithmetic: A common example depicted in Figure 2.1 is that the high-
dimensional vector space can also encode relationships like gender or royalty,
thus, knowing how man relates to king (royalty) and man relates to women
(gender), one can calculate the word representation for queen (women+ (king −
man)). Nowadays, neural machine translation models are often trained on sub-
word level to avoid out-of-vocabulary words and learn e.g., what the stem and
ending of words are, thereby also reducing the vocabulary size due to reusability,
and thus, improving MT quality for rare words (Sennrich et al., 2016).

Figure 2.1: Vector arithmetic on word embeddings (taken from Unbabel3).

Originally, Recurrent Neural Networks (RNNs), often using Long-Short Term
Memory (LSTM) layers, were used for NMT, as they can memorize important
parts of the sentence that are required to correctly translate later tokens, for
example, for coreference resolution. However, for long sentences, this memory
functionality often did not work as anticipated, leading to a reduced accuracy
for longer sentences. A reason for the decreased performance is that the encoder-
decoder architecture requires all information to be compressed in an intermediate
representation of fixed size, which was shown to reduce the performance for
longer sentences (Cho et al., 2014). To solve this, Bahdanau et al. (2014) propose

3https://resources.unbabel.com/blog/ai-talking-understanding
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to introduce so-called attention mechanism, by mapping the source sentence
into a sequence of vectors instead of a fixed size vector. The decoder can then
“attend” to certain parts of this sequence while decoding, thus, it can learn that
some source words are more relevant to the generation of the current target word
than others, thereby facilitating longer sentences.

Later on, Gehring et al. (2017) proposed fully Convolutional Neural Networks
(CNN), relying on gated linear units (Dauphin et al., 2017) and residual connec-
tions (He et al., 2016a), with a separate attention module per decoder layer, and
achieved the new state-of-the-art in MT. In contrast to RNNs, CNNs do not need
to be trained sequentially from beginning to end, allowing better parallelization
and therefore faster training or the use of much more training data. The earlier
layers in CNNs capture interactions of nearby words, while later layers can also
capture long-range dependencies.

As in RNNs, this CNN model also used attention mechanisms only to help the
model focus on certain parts of the input. Shortly thereafter, Vaswani et al. (2017)
showed that indeed “attention is all you need”, thus, that attention mechanisms
are powerful in themselves. The proposed “Transformer” architecture has the
advantage of faster training due to parallelization and performs particularly well
at modelling dependencies without regard to their distance in the input and
output sequences. The encoder and decoder both use multi-head self-attention
to compute representations of their inputs, and also compute multi-head vanilla-
attentions between encoder and decoder representations. Since then, many NLP
problems have been addressed using Transformer-based architectures, e.g., in
pretrained systems like BERT (Devlin et al., 2019) or GPT-3 (Brown et al., 2020).

Compared to SMT, NMT models are trained end-to-end and do not rely on a
variety of separately built components. There is also no separation of the problem
into language model and translation model. Models trained on one domain
can further be fine-tuned towards other domains using much less data (Luong
and Manning, 2015), thus, showing a degree of generalization. Even though the
training times are long, NMT requires much less memory than SMT.

A problem with the use of fixed-size vocabularies in NMT is that rare tokens
might not be covered, leading to the creation of “unknown” tokens in the trans-
lation. The phrase table in SMT systems also memorizes and translates such
rare words. However, as discussed above, approaches like Byte-Pair Encod-
ing (BPE) (Sennrich et al., 2016) operate on the sub-word level to reduce or avoid
out-of-vocabulary problems.

2.1.5 Decoding

As in many other NLP tasks that require text generation (e.g., text summariza-
tion), a decoding process is required to generate a target sequence for an input
sequence. Given the whole source sequence and a partly generated target se-
quence, the MT model generates a probability distribution for the next token of
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the target sequence. The decoding process now determines how these probability
distributions given by the MT model are used to generate the overall translation
result for a source sequence. With thousands of possible tokens at each decoding
step (depending on the vocabulary size), the search problem is exponential in
the length of the sequence, making it an NP-complete problem (Knight, 1999).
Since exhaustive search for such problems is unfeasible, heuristics need to be
employed to get high quality sequences even if only small parts of the search
space are explored.

The most simple decoding approach that can be used is greedy search, where at
each step in the process the most likely token is chosen. Naturally this approach
is extremely fast, but at the same time it cannot find sequences that rely on a
temporarily worse choice to get an overall better score. Consider an exemplary
3-token scenario, where the highest probability for the first token is 0.5, followed
by a highest probability of 0.7 for the second and third token. Overall, this
sequence achieves a likelihood of 0.5 ∗ 0.7 ∗ 0.7 = 0.245. Whereas choosing
another initially sub-optimal token with probability 0.4 might lead to the next
most likely words having probability 0.8 and 0.9, giving us an overall likelihood
of 0.4 ∗ 0.8 ∗ 0.9 = 0.288.

To tackle this issue, a frequently used heuristic is beam search (Koehn et al., 2003),
which expands all possible next tokens in a breadth-first fashion and keeps the
k most likely ones in each step. The beam size (or width) k defines how many
traces through the graph are explored in parallel: bigger values lead to better
results at the cost of decoding speed. Note that beam search with beam size 1 is
identical to greedy search. In practice, values around 5 are commonly chosen as
this turned out to be a good trade-off between quality and speed.

Naturally, decoding is a whole research field of its own, where many popular
search algorithms like A* (Och et al., 2001) can be deployed that make different
pruning decisions to restrict the search space. An interesting example is diverse
beam search (Vijayakumar et al., 2016), which adds a diversity penalty to avoid
too similar sequences within the beam size, thereby generating more diverse
outputs than pure standard beam search decoding.

2.1.6 Evaluating Machine Translation Quality

Now that we have seen different approaches to MT, this section focuses on ways
to judge if a MT output is of good quality. Traditionally, MT systems were eval-
uated by humans, which is why we start our overview with human evaluation
methods. However, this process is expensive and time-consuming. Therefore,
several automatic evaluation schemes have been proposed that correlate highly
with human evaluations, but can be run cheaply and efficiently, thereby allowing
model tuning.
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Human Evaluation

Traditional human evaluation of MT as conducted in ALPAC (1966) comprises
intelligibility and fidelity on 9 point scales. Intelligibility here refers to the automatic
translation being understandable and reading like normal target language, which
is judged mono-lingually in the target language. Fidelity on the other hand is
assessed with access to the source and captures whether the translation really
retains the meaning of the source without distortion. Back then, ALPAC used
a direct assessment in the form of a rating scale for intelligibility, but used an
indirect approach for fidelity where raters saw the source only after having seen
the translation, and were asked to rate how informative the source was. The
more informative the source was, the less of the meaning was already captured in
the target. To compensate inter-rater variation, evaluation schemes often employ
multiple raters.

Human evaluation in the 1990s by the Advanced Research Projects Agency
(ARPA) was instead focusing on the measures adequacy, fluency, and comprehension
(Han et al., 2016). Adequacy here is similar to the traditional fidelity metric and
captures how much information from the source is retained and is therefore
measured with access to the source on a simple 5 point rating scale. However,
in contrast to the ALPAC approach, it is measured directly. Fluency on the
other hand is comparable to the original intelligibility metric and captures if the
translation is a well-formed target language sentence, again rated on a 5 point
scale. Comprehension captures if the reader understands the conveyed information
and is measured by having raters reply to 6 questions with 6 answer possibilities
that were created with the reference translation.

Direct assessment, as proposed by Graham et al. (2017), asks raters to rate the
adequacy on a scale from 0 to 100, where raters have a slider and can only see
the anchors on the left and right. It can be either by ranking the adequacy in
comparison to a human reference translation, or by asking for how adequate the
sentence is to the source (requiring proficiency in both languages). This approach
is nowadays frequently used in the annual Conference/Workshop on Machine
Translation (WMT).

Various other scales have also been proposed, but what they have in common is
that the MT proposal is either judged on its own, or compared to the source or a
reference translation (Läubli et al., 2020). To score the quality, humans either rate
the MT proposal or post-edit it according to some criteria.

Apart from these rating approaches, the different MT outputs can also be com-
pared to one another based on segment ranking. In earlier versions of WMT, a
complete ranking of the different MT outputs was conducted for each source
sentence (Callison-Burch et al., 2011). Later evaluation schemes instead display
the source and reference along only 5 MT outputs that need to be ranked, thus,
yielding 10 pairwise comparisons (if there are no ties) (Bojar et al., 2014). An
advantage of such relative ranking based approaches compared to direct ratings
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is that the inter- and intra-annotator agreement is much higher (Callison-Burch
et al., 2007). However, relative ranking does not provide any information on the
magnitude of the differences between two systems (Läubli et al., 2020), which
is why direct assessment remains a widespread approach that was also used by
later versions of WMT.

Automatic Evaluation

While humans are the target users of MT output and therefor the gold-standard
in judging MT output, doing a proper MT quality evaluation with humans is
very time-consuming and expensive. Especially when training an MT system,
to tune parameters one would need feedback on the quality of thousands of
validation (and later test) sentences, which is not feasible with human translators.
Therefore, a whole research field in MT aims to design automatic metrics that
highly correlate with human judgments. These automatic measures can usually
be employed either at sentence level (comparing the MT output with a (set of)
reference translation(s)), or at the corpus level (doing the same across a whole
corpus), where the latter usually gives more reliable results. Most of the metrics
rely on string comparison between the MT output and one or several known
reference translations, e.g., word overlap or the edits required to transform one
into the other. Working on a string level implies focusing on lexical similarity
only, however, some more advanced metrics also consider linguistic features like
named entities, paraphrasing, or part of speech (Han et al., 2016).

Banerjee and Lavie (2005) highlight a set of requirements for automatic MT eval-
uation metrics: high correlation to human evaluation, sensitive to differences in
MT quality, “consistent (same MT system on similar texts should produce similar
scores), reliable (MT systems that score similarly can be trusted to perform simi-
larly) and general (applicable to different MT tasks in a wide range of domains
and scenarios)”.

In the following, we will outline a few of the common automatic evaluation met-
rics, which compare an MT hypothesis with (an) externally provided reference
translation(s), some of which will be used throughout this thesis.

Word Error Rate (WER) Su et al. (1992) present what is later called Word Error
Rate (WER), which computes the minimal number of edits required to transform
the MT output into a reference translation. As edits, the work considers deletions,
insertions, and replacements, and uses a dynamic programming approach to
efficiently compute their metric. One should however note that reorder is not
explicitly considered, but would appear as a delete operation followed by an
insert, thus, making word order errors especially expensive.

Position-Independent Word Error Rate (PER) To overcome this problem, Till-
mann et al. (1997) introduce the Position-independent word Error Rate (PER),
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which ignores the word order and simply compares for identical words in both
strings. Every non-matched word is considered a replacement, and every addi-
tional/missing word is considered a deletion/insertion. Thus, it is guaranteed to
be less or equal compared to WER but sentences ordered wrongly do not count
as errors.

Translation Edit Rate (TER) Another approach to incorporate word order, that
is still widely used today, is the so-called Translation Edit Rate (Snover et al.,
2006). It is similar to WER, but adds a movement of single or groups of words
as an additional edit operation to replace, insert, and delete. In terms of cost,
moving a group of words has equal cost of 1, same as moving a single word, or
deleting/inserting/replacing a single word. Extensions of Translation Edit Rate
(TER) have also been proposed, a popular one being TER-Plus (TERp) (Snover
et al., 2009), which additionally considers stem matches, synonym matches, and
phrase substitutions.

BiLingual Evaluation Understudy (BLEU) Instead of viewing the similarity
problem as an edit distance to transform one string into another, BiLingual
Evaluation Understudy (BLEU) (Papineni et al., 2002) compares the n-gram
overlap between the strings. In principle, BLEU is based on the well-known
precision metric, counting how many n-grams are correctly output by the MT
system. However, a predicted word can not count as correct more often than it
occurs in any reference (called modified unigram precision). The 1-gram overlap
can also be considered as adequacy, while longer n-grams represent the fluency
aspect. BLEU is one of the most widely used MT evaluation metrics, as it is easy
to compute and was one of the first metrics which correlates highly with human
evaluation. However, one should note that sentence-level BLEU scores might not
always be accurate, and that averaging across a test corpus is usually required
for reliable results, or as the authors put it: “quantity leads to quality”.

National Institute of Standards and Technology (NIST) NIST (Doddington,
2002), named after the National Institute of Standards and Technology, is based
on BLEU but weights n-grams by informativeness. Here, informativeness is
simply defined as rareness, thus, rarer n-grams get higher weight. This has
the advantage that common n-grams which are easier to generate correctly do
not pull up the score, while rare n-grams, which are much harder to generate
correctly, are rewarded with higher scores.

Metric for Evaluation of Translation with Explicit ORdering (METEOR) Com-
pared to BLEU and NIST, Metric for Evaluation of Translation with Explicit
ORdering (METEOR) does not only focus on precision, but also on recall, thus,
the degree to which “the translation covers the entire content of the translated
sentence” (Banerjee and Lavie, 2005). BLEU instead only has a so-called “brevity
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penalty” to penalize very short translations, which captures some degree of recall
but naturally not its entirety. Instead, METEOR is based on the harmonic mean
between unigram precision and unigram recall, with an adapted weighing where
recall counts much more than precision. METEOR also considers synonyms,
word stems, and a measure of fragmentation to capture the order of words.

2.1.7 Comparison of Machine Translation Paradigms

Now that we have seen which MT paradigms exist and how quality of MT
systems can be determined, we give an overview of the comparative literature.

As already said before, the current state-of-the-art NMT yields higher automatic
evaluation metric scores than SMT (Castilho et al., 2019). Toral and Sánchez-
Cartagena (2017) compare NMT and PBSMT for 9 language pairs, and find better
automatic scores for 7 out of 9 pairs. Wu et al. (2016b) agree and highlight that
methods like operating on the sub-word level employed in NMT lead to even
stronger improvements over PBSMT for morphologically rich languages.

Castilho et al. (2017) agree that NMT results in terms of automatic evaluations
“are very promising, however human evaluations show mixed results”: NMT
increases the fluency, but in terms of adequacy and PE effort no paradigm clearly
outperformed the other in their study on 3 different domains. This however
partly contradicts Bentivogli et al. (2016), who report that the time required for
PE NMT was reduced by 26% in comparison to SMT. Regarding fluency, Toral
and Sánchez-Cartagena (2017) agree, finding that NMT output is “more fluent
and more accurate in terms of word order compared to [PBSMT]”.

Apart from investigating which paradigm overall shows the best results, re-
searchers have investigated the linguistic features leading to these gains and
under which circumstances NMT might not be the best. Bentivogli et al. (2016)
report fewer lexical, and morphological errors, and find that NMT improvements
get stronger for lexically richer text. Furthermore, NMT output has less word
order error and particularly performs well on placing verbs correctly. These
reordering improvements were also shown in the study by Toral and Sánchez-
Cartagena (2017), where NMT also lead to improved reordering results across 9
investigated language pairs. A recent study by Díaz et al. (2020) investigated the
main error types remaining in modern NMT across a large variety of language
pairs and showed that the major problems fall into the category of “lexical seman-
tic”, comprising e.g., word ambiguity, unknown words or dialectical variants.

Another linguistic analysis of the paradigms compares not only SMT and NMT,
but also RBMT (Macketanz et al., 2017) using English-German in the IT-domain.
Interestingly, using their test suite of linguistic phenomena, they find that the
overall average performance of the three paradigms is very similar. SMT would
be best for terminology and quotation marks, while RBMT outperforms all others
on compounds, verbs and phrasal verbs. On such verbs and phrasal verbs, NMT
is apparently better than SMT, however, worse than RBMT. Both RBMT and
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NMT are best on function words, long distance dependencies, as well as verb
tense, mood, and aspect. Their overall conclusion therefore is that RBMT seems
to handle given linguistic phenomena better than other systems, followed by
NMT and then SMT. This also shows that NMT can learn rules coded in RBMT
better than SMT. One should however note, that the explored NMT system was
rather premature, so these findings might not be fully reliable.

Koponen et al. (2019) analyze editing patterns in PE and find that RBMT re-
quires most deletions, SMT most insertions, while NMT has the greatest number
of word-form changes and word-substitutions. Overall they conclude that even
though the edit types are different for the different MT paradigms, these differ-
ences are “not necessarily reflected in process-based effort indicators”.

For sentence length, Bentivogli et al. (2016) find that NMT outperforms PBSMT
on all sentence lengths, however, here, Toral and Sánchez-Cartagena (2017) dis-
agree and show that SMT performs better for segments longer than 40 words.

Overall there is consensus that NMT yields the best overall results (assuming
there is enough training material for the language pair and domain), however,
the error types are different for the MT paradigms, and there is no consensus on
the impact of MT paradigm on PE effort. We will however revisit the topic of PE
effort in a later section.

2.1.8 Human Parity

For some language pairs, NMT developers claimed to have achieved human
parity: For example, the Microsoft system for English to Chinese news translation
(Hassan et al., 2018) claimed to be on a level with professional translators and
significantly above crowd-sourced non-professional translation. Similar state-
ments of human parity have been made for other language pairs like English
to Czech (Popel, 2018), however, here the authors warned that the evaluation
scheme might be inappropriate for such claims (Bojar et al., 2018). As statements
about human parity also capture lots of media attention and question the concept
of PE, we use this section to examine whether human parity has indeed been
reached for some language pairs.

Toral et al. (2018a) and Läubli et al. (2020) reinvestigate the claim of the Microsoft
system, showing that “the finding of human–machine parity was owed to weak-
nesses in the evaluation design – which is currently considered best practice in
the field” (Läubli et al., 2020). For proper evaluation of human parity, one should
consider three aspects: (i) the language in which the source was originally written,
(ii) the proficiency of the evaluators, and (iii) the inter-sentential context, i.e., the
impact of rating sentence by sentence or seeing also the document’s context.

(i) aims to prevent so-called “translationese”, that is, a source which is actually a
human translation of a text originating from another language. Such sentences
were included in the test material to half the manual effort for corpus creation:
WMT usually takes half of the sentences from one language (e.g., Chinese) and
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half from another language (e.g., English), translates both, and uses all sentences
together for both language directions, thereby increasing the sample size by a
factor of 2. However, having such translationese phenomena makes it easier
for MT systems to recover the translation because translationese exhibits less
lexical variety, and is therefore generally easier for MT systems. The authors were
therefore able to show that human parity has indeed not been achieved when
considering only sentences that were translated from their original language.

Regarding (ii), expert raters have a higher inter-annotator agreement and judge
the gap between Human Translation (HT) and MT to be wider, because they
also consider nuances of the language that non-professionals would not. Thus,
human parity analyses should rely on expert raters.

For (iii) it was shown that raters assessing adequacy on whole documents prefer
HT, while viewing sentences in isolation they show no significant preference
(Läubli et al., 2020). This is because inter-sentential aspects are not considered by
NMT systems trained on a sentence-level. However, recent research on document-
level MT systems also aims to better capture the context, thus potentially fixing
this gap in the future (Kang et al., 2020).

Furthermore, explorations of human parity should ensure that the translation
was done from scratch by professionals and not post-edited; that bilingual raters
are employed to compare the output to the source and not to a reference; and
that reference translations should not be heavily edited, as this increases fluency
but reduces adequacy “to the degree that they become indistinguishable from
MT in terms of accuracy” (Läubli et al., 2020).

Some of the proposed guidelines, namely to use original source text only and to
provide access to the whole document when rating, are now considered from
WMT 2019 onwards (Barrault et al., 2019), thereby making MT quality analyses
more reliable.

2.1.9 Summary

In this section, we have briefly summarized the history of machine translation
and how the research community moved from rule-based MT, to statistical MT,
and now to neural MT, going hand in hand with an increasing quality. Some
claims of human parity achieved by NMT have been made, however, more
detailed analysis showed the importance of MT evaluation schemes, and how
evaluation methods that used to be sufficiently accurate now need to be adapted
to be sensitive enough for the new level of MT quality.

An investigation of the pros and cons of the paradigms has, however, shown
that NMT is not the best tool in every linguistic aspect yet. Furthermore, with
thousands of languages existing in the world, and plenty of unresearched text
domains, one should not be fooled by impressive results of NMT on a few
language pairs and in common domains. MT is still far from solved and we hope
to see as much improvement in the following years as we did in the last years.
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Views on MT are also changing: Whereas historically, the relationship between
human and machine translation was considered adversarial due to claims the
MT would replace the human, more and more stakeholders start to view the
two paradigms as symbiotic (Balashov, 2020). This makes sense, as no matter
how good NMT has become even under the best conditions, blindly trusting MT
systems is and will not be possible in many use cases. Humans will remain in
the center of the translation process, to consider cultural nuances, to ensure the
MT output is not biased, and in general, to ensure a high-quality translation not
just on average, but for every single sentence. So even if the translator’s job is
and will be strongly impacted by advances in MT research, it will not become
superfluous. Therefore, this thesis focuses on enhancing the human-machine
collaboration in the form of post-editing.

2.2 Post-Editing

The process of manually capturing and correcting mistakes, as well as selecting,
adapting, and recombining translation candidates produced by automatic transla-
tion segments, is called Post-Editing (PE). While the strong improvements in MT
have only been achieved in recent years, the concept of post-editing dates back
a long time, with books being published on the topic as early as 1982 (Lawson,
1982). We will first provide a motivation for PE, then look at the PE task in more
detail, inspect how it impacts time and quality, and finally present studies on
translators’ perceptions towards PE.

2.2.1 Motivation for Post-Editing

The motivation for PE is that correcting the often erroneous output of transla-
tion technologies may substantially boost productivity compared to a manual
translation from scratch (Green et al., 2013). PE thus combines the advantages
of both AI and human intelligence: While the AI is good at quickly proposing
draft translations of nowadays often high quality, a human with high proficiency
in source and target language is needed to ensure that the meaning is identical,
to analyze lexical and semantic nuances, and to understand the segment of text
in a large (con)text, including the target audience, their cultural background etc.
Thus, the task changes from mostly text production to comparing and adapting
machine-generated proposals, or put differently, from control to supervision.

While MT improved tremendously in recent years, there will always remain tasks
for the human translator: A simple example would be an under-specified source
sentence, for which a translation requires online research or even talking to the
author of the original sentence to understand the intended meaning. Furthermore,
many situations like legal text or package inserts for drugs will always require a
human for ensuring correctness. As we have seen in the previous section, MT is
closing in on human parity, however, only for very frequent language-pairs and
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domains with large amounts of training data, so for almost all real-life scenarios,
human PE is still and will remain relevant for many years to come.

Nevertheless, the enthusiastic media reports about MT progress are pushing
Language Service Providers (LSPs) to integrate MT PE into their day-to-day
workflows, with 50% of LSPs already offering MT PE in 2016 (Lommel and De-
Palma, 2016). A large-scale study conducted by Common Sense Advisory (CSA),
a major translation think tank, further showed that around 34% of participating
translators offered PE of MT in 2020 (Pielmeier and O’Mara, 2010). It has there-
fore been argued that MT integration in the translation process is “as disruptive
and revolutionary as the disruption caused by the introduction of translation
memory technology in the 1990s” (O’Brien and Moorkens, 2014).

2.2.2 Post-Editing Tasks and Workflow

Two types of post-editing can be distinguished: Light post-editing aims to make
the MT output readable, understandable, and convey the correct meaning, but
does not give any quality guarantees beyond this. Full post-editing additionally
ensures that the language style, choice of words, etc. is appropriate and therefore
aims to achieve the level of quality as ‘that of text that has been translated by
a human linguist’ (De Almeida, 2013). As the distinction into light and full PE
existed for decades in which MT quality has improved drastically, nowadays the
raw MT output is often good enough to understand its meaning, such that light
post-editing is becoming less relevant.

While this dissertation focuses on PE of MT, other text types can also be post-
edited. On the one hand it could be a HT from another translator which requires
reviewing. PE of HT, however, encompasses the correction of different types of
errors compared to PE of MT, e.g., typos or inconsistencies that a MT would not
make (O’Brien and Moorkens, 2014). On the other hand, the initial draft could
have been proposed by a Translation Memory (TM) system. Simply put, TMs
are large databases containing already completed human translations which are
matched against the sentence to be translated to provide a starting point for PE
(see subsubsection 2.3.1). However, PE of MT and PE of TM also differ in the
types of error that require correction: MT is a potentially incorrect translation
of the real source sentence, whereas TM is a correct translation of a similar but
usually not completely matching source sentence. Thus, when PE TM output one
must particularly consider differences in the source sentences, while PE of MT
requires correcting translation errors that no human translator would have made
(Moorkens and O’Brien, 2017).

The kind of PE that we focus on, MT PE, substantially changes the translation
workflow (Zaretskaya and Seghiri, 2018): An early comparative study between
PE and manual translation by Carl et al. (2011) showed a modest improvement
in quality when PE, which was also faster and had significantly more fixations
on the target text than manual translation. As expected the study also showed
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more deletions, more navigational keys, and less insertions in the PE condition.
De Almeida (2013) found that post-edits typically are reorderings, changes of
capitalization, and changes of the inflection based on gender or number, however,
as discussed above, the required changes heavily depend on the type of MT
that has been used. Green et al. (2013) analyzed different interaction patterns
during PE: While traditional translation consists of gisting, drafting, and revising
phases (Carl et al., 2010), these phases are interleaved in PE (Green et al., 2013).
Furthermore, Green et al. (2013) found longer pauses and a significantly reduced
amount of mouse and keyboard events in the PE condition. They also showed
that MT suggestions help some subjects more than others. Even though PE and
HT differ that strongly, only “few professional translators have received training
either in machine translation technology or in post-editing practices to date”
(Moorkens and O’Brien, 2017). A manual inspection of the courses offered to
translation students at universities today shows that this is now changing.

2.2.3 Effort and Time Savings

The basic assumption of PE is of course that the more work is already done by
the AI, the the less work remains for the human, thus reducing effort and saving
time. On the other hand, post-editors need not only read the source text, but
additionally consider the translation proposal, which can have a variety of errors
simultaneously combined with useful chunks of text, thus requiring continuous
scanning of both texts, making a plan how to ideally use the translation proposal,
and in the end apply the required changes. The original assumption that the less
work remains for the human the quicker it gets, is therefore not necessarily true.
This has lead to a variety of studies on PE effort and time savings in the past:

Early work by Krings (2001) found that PE decreased time compared to traditional
translation by 7% when done on paper, but increased time by 20% when done
on a computer screen. While the measured times may not be precise since a
think-aloud protocol was used, this shows how strongly benefits gained from
PE depend on interface design. Zampieri and Vela (2014a) found that PE was on
average 28% faster for technical translations. Aranberri et al. (2014) show that PE
increases translation throughput for both professionals and lay users (although
the latter benefit more strongly from the MT), and Läubli et al. (2013) find that
PE also increases productivity in realistic environments (in contrast to the many
existing isolated feature experiments). Furthermore, the recent study on post-
editing a novel by Toral et al. (2018b) shows that the underlying MT paradigm
impacts PE productivity, where post-editing using NMT increases throughput by
36% compared to 18% for SMT. Whereas the exact speed gains depend on the
chosen language pair, MT system, text domain, and the translator, the conclusion
of these studies is very clear: there is a significant gain in productivity when PE
compared to traditional translation.
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2.2.4 Quality

After having seen that PE saves time, the obvious question is if those time
savings also impact the translation quality, e.g., because post-editors might accept
imperfect MT proposals to save time. This section reviews studies on PE quality
in terms of correctness, preference, linguistic properties, and creativity.

Correctness

A study investigating PE quality on three different language pairs by Green et al.
(2013) showed that PE indeed reduces errors. In contrast to prior work (including
e.g., Krings (2001)) Green et al. (2013) payed special attention to a rigorous, and
controlled analysis without any unintended factors influencing the PE time or
quality. Interestingly, a study a few years earlier by Guerberof (2009) still found a
comparable amount of mistakes between human translated and post-edited text.
Daems (2016) agrees with Green et al. (2013) that PE is better in terms of adequacy,
however, finds that manual translation is better for acceptability, meaning that it
“is true to the target (con)text and audience”.

Preference

In terms of preference of the final translation, we see a similar trend: In 2009,
Fiederer and O’Brien (2009) found that human translations were selected as a
favorite 63% of the time, whereas Green et al. (2013) found significantly more
preference for PE for several translation directions just four years later. In Bowker
and Ciro (2015), 49% preferred text that was PE compared to 42% preferring HT.
Similarly, both the participants and an automatic classifier in Daems et al. (2017)
were unable to distinguish PE from HT text.

Post-Editese

However, language is more than correctness and preference. Thus, Toral (2019)
investigates a concept similar to the above discussed translationese, namely
post-editese. In particular, he investigated if PE translations are different from
HT and indeed finds that PEs are “simpler and more normalised and have a
higher degree of interference from the source language than HT”. Reinvestigating
the earlier papers shows that already Fiederer and O’Brien (2009) found that
participants ranked PE higher than HT for accuracy and clarity, but found HT
better in terms of style. Similarly, Green et al. (2013) already showed that the
translator is primed by the output of the MT system and Čulo and Nitzke (2016)
found less variation in PE than in HT, attributing it to a “shining-through” of the
MT to the PE version. Farrell (2018) investigated markers of MT in PE output,
and found that “PEMT may lack the variety and inventiveness of HT”. These
findings were replicated and extended in Toral (2019), who found least lexical
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variety in MT (as it prefers frequent solutions), then PE (as it primes translator),
and most variety in HT. He also showed that there is less variety in NMT than in
SMT. Furthermore, the lexical density (percentage of content words), was lower
in both PE and MT than in HT, but comparable between the two, thus arguing
that PE/MT are lexically simpler. Here again PE-NMT showed an even lower
density than PE-SMT. In terms of length ratio (comparison between the source
and target sentence length), MT and PE are again more similar to the source
than HT. Apart from this, Toral found further evidence for interference from the
source, where the Part of Speech (PoS) were most similar for MT, then PE, and
least for HT. Here, however, NMT had less interference from the source than
SMT. Taking all of these findings together, Toral argues that in the long term, PE
might lead to the target language being simplified and overly influenced by the
source language.

Creativity

With increasing MT quality, creativity is frequently stated as a factor where
humans will continue to outperform machines. To investigate whether this is
true, Guerberof-Arenas and Toral (2020) explored the creativity and reading
experience of a fictional story in the conditions MT, MT PE, and HT. The results
showed that indeed the involvement of translators (HT and PE) show more
creativity, however, there were no statistical differences between HT and PE, but
only a trend that creativity might be higher in HT. Nevertheless and similar
to other studies, translators subjectively felt that their creativity was limited in
the PE condition. An additional analysis of “creative shift”, i.e., translations
deviating from the source through abstraction, concretisation, or modification,
revealed that HT provides more novel translation that is less constrained by MT,
which is in line with Toral (2019). The authors thus concluded that in HT and PE
the “professional translators add the creativity factor, by providing solutions that
are both novel and acceptable, that MT is lacking at present.”

2.2.5 Translators’ Perceptions

So far we have seen that PE increases productivity, reduces errors but also changes
the linguistic properties of the final translation. Overall, the advantages have lead
to a wider adoption of MT technology into translation workflows (Zaretskaya and
Seghiri, 2018; Zaretskaya et al., 2016). This section analyzes whether translators
also like the transition towards PE.

Older research tackling this question showed a strong dislike of translators
towards PE (Lagoudaki, 2009a; Wallis, 2006), for which they are sometimes also
paid less. More recent studies agree that translators are still cautious about PE and
question its benefits (Gaspari et al., 2014; Koponen, 2012), reasons being that it is
considered less creative and assumed to be slower than translation from scratch,
but also in part because it is seen as a threat to their profession (Moorkens, 2018).
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Kelly goes a step further and even calls PE ’linguistic janitorial work’4. One aspect
that might lead to this perception is that PE tends to require repeatedly fixing
similar MT errors, thus, O’Brien and Moorkens (2014) argue that the MT engine
should ideally learn from human post-edits, which is one of the topics addressed
in this thesis. Back in 2014 when this work was published, 56% of translators
saw MT as problematic as it was “still in baby shoes” or “just horrible”. They
also found that MT often contains errors a human would not make, e.g., mixed
gender between noun and adjective, or a singular/plural mismatch between
noun and modifier. While this was true for previous MT approaches, modern
NMT is usually very fluent. Other reasons for the found dislike are of a more
general nature: PE is a revision task and therefore similar to revision of other
translator’s works, which some translators are good at and enjoy, while others do
not (Mossop, 2007). Finally, an argument against PE is the fact that it is perceived
to be more cognitively demanding than translation from scratch because the MT
needs to be considered additionally to the source (O’Brien and Moorkens, 2014).
This might also be the reason why translators report to be less productive when
PE, although as also discussed above, throughput measurements clearly show
the opposite (O’Brien and Moorkens, 2014). According to a large-scale study
involving more than 7000 translators and interpreters conducted by Common
Sense Advisory (CSA), around 34% of translators offer PE of MT, but only 3%
prefer PE over pure translation or editing human translation (Pielmeier and
O’Mara, 2010).

In contrast to these rather negative studies, Green et al. (2013) demonstrated that
translators actually strongly prefer PE and argue that “users might have dated
perceptions of MT quality”. A recent study by Vela et al. (2019) found similar
results, where professional translators, who were given the choice between
translation from scratch, TM, and MT, chose MT in 80% of the cases, highlighting
the importance but also popularity of MT PE.

One distinction in terms of attitude towards PE seems to exist between experi-
enced translators, who exhibit rather negative attitudes and are rather reluctant
to take on PE jobs (Moorkens and O’Brien, 2015) and novice translators, who
have more positive views on PE and are better suited for PE jobs (Yamada, 2015).
Daems (2016), however, showed that professionals believed they could produce
similar quality translations with or without PE, whereas students seemed to
struggle with the cognitive processing of meaning shifts.

Thus, overall there does not seem to be consensus on the translators’ perceptions
of PE: A lot of research suggests that translators dislike it or at least are cautious,
while other works show positive opinions on PE. Daems (2016) nicely summa-
rizes that her participants found PE useful but preferred manual translation as it
is more rewarding.

4https://www.huffpost.com/entry/why-so-many-translators-h_b_5506533
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2.2.6 Summary

This section provided an in-depth review of the post-editing process, explaining
the steps involved and how improvements in MT are pushing PE into translator’s
day-to-day work. We have also discussed that the errors that need to be corrected
changed with different MT paradigms, but are in general not comparable to
the errors in TM matches or during human revision. In terms of time savings,
the literature nowadays agrees that PE is indeed faster than translation from
scratch, however, quality must be considered with more care. On the one hand,
the amount of errors decreases in PE, but on the other hand a phenomenon
called post-editese has been shown in several studies, even with modern NMT.
Thus, when style matters most and lexical variety is of highest concern, one
should avoid PE if the time allows it, but when correctness matters most, PE
is the proper approach. For literature translation, traditional translation might
thus be the better choice, while for translations of technical documents, PE
would be more suitable. Finally, we discussed the human attitudes towards
PE, and saw that lots of papers reported very negative opinions on the topic,
especially in older works. However, we have also seen works where translators
preferred PE, and have argued that one important consideration when talking
about translator’s perceptions is their years of experience within the profession,
with novice translators, that nowadays also participate in PE courses during their
studies, being much more positive towards PE.

2.3 Computer-Aided Translation

This section reviews the work environments of translators: Computer-Aided
Translation (CAT) tools. The idea to focus on “cooperative man-machine systems”
instead of aiming for fully automating the entire translation process was already
proposed by Kay in 1980 (republished in Kay (1997)), envisioning a word proces-
sor optimized for translation called “translator’s amanuensis”. Whereas no CAT
tools existed at that time, computers gained popularity among translators, not
just for word processing, but also for the creation of glossaries, and even the first
versions of TMs (Hutchins, 2007).

Nowadays, most professional translators work within fully-fledged CAT envi-
ronments (Van den Bergh et al., 2015), and maximizing the potential of these
workbenches is thus one of the priorities for both the research community and
industry (Mesa-Lao, 2012). CAT tools minimally show a text window for the
source text and one supporting text editing operations for the target, which can
initially be either empty (translation from scratch), or populated with a transla-
tion proposal (PE). Usually however, CAT tools offer a wide range of additional
features supporting the translation process.

We will first give an overview of the features provided by CAT environments,
then talk about the available systems both from academia and industry, present
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studies that show the limitations of current environments and discuss user needs.
Last, we will talk about approaches exploring interaction modalities other than
mouse and keyboard and summarize the main take-aways. Overall, this section
provides a solid foundation for the development of our own multi-modal CAT
environment in Part II.

2.3.1 Features

Kay (1997) advocates a view “in which machines are gradually, almost impercep-
tibly, allowed to take over certain functions in the overall translation process”.
This vision has nowadays become a reality, where "it is widely acknowledged
that technological change - for example the widespread use of translation blogs,
wikis, open-code translation software, crowdsourcing, MT, TM, cloud-based
translation tools, corpora, etc. has influenced the way in which both professional
and trainee translators work" (García-Aragón and López-Rodríguez, 2017).

This section provides an overview of several of these interesting aspects inte-
grated in CAT tools and discusses how these features can support translators in
their day-to-day work.

Administrative Features

Translation jobs usually start with a customer request, defining the amount
of text that needs to be translated, which domain it comes from, when the
translations are needed, and what is paid for it. While freelance translators
often directly load the raw text file formats like .docx, .pptx, .pdf into their
translation environment and start translating, bigger translation jobs require
more thorough planning and management. To facilitate this, CAT tools offer a
variety of project management tools, like splitting tasks and distributing them
among translators, assigning review tasks, where one translator reviews the work
of another translator, monitoring progress, or having team communication.

Displaying Text

Even though CAT tools are designed for experts and therefore at first glance quite
complex and overloaded, the basic functionality while translating is very simple:
at their core, CAT tools need to visualize the source text and the continuously
evolving (translation from scratch) or pre-filled (PE) target version of the text.
The source and target text can be (i) segmented into individual sentences or kept
in whole paragraphs, and (ii) displayed side-by-side or one above the other, with
a segmented left-right visualization being the most common combination among
translators (85% according to Läubli et al. (2021)). Läubli et al. (2021) explored all
four combinations and showed that segmentation speeds up error identification
and typing, but makes revision of super-sentential context harder. For pure
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copying, a top-bottom visualization led to speed gains, however, for revision
tasks like PE, a left-right visualization is better suited. Similar to standard word
processors like Microsoft Word, CAT tools also support styling of text (bold,
underline, fontsize, etc.) and offer special functionality to apply the source text
style on the target text (e.g., mark text in the target, use a hotkey while clicking
on a source word whose style is then applied to the selection). In segmented
visualizations, translators generally do not see the text in the layout and style
of the original document. This aims to keep the focus on the text, but if needed,
translators can choose to view the text in its original formatting. A horizontal
text visualization can be seen in Figure 2.2 on the left (source text and target text).

Figure 2.2: The memoQ CAT tool, with source and evolving target segments on
the left. Translation results on the right, with terms from the term base (also
highlighted in the source), as well as TM matches, and changes between the
actual source and the source of the TM match (taken from Balashov (2020)).

Source-Target Alignments

CAT tools with MT support can also offer alignments between source and target,
indicating which parts of the source likely correspond to which parts in the
MT. Such alignment tools can either be created independent of the MT system
used, or use the internal alignments of the MT system to determine which links
to visualize. Schwartz et al. (2015) showed that displaying alignments helps
increase PE quality since it facilitates quick comparisons of even complex sentence
structures. The alignments as displayed in their study can be seen in Figure 2.3.

34



Figure 2.3: Word alignments between source and target (taken from Schwartz
et al. (2015)).

Terminology Management

Both monolingual and bilingual dictionaries are widely used tools when learning
languages and translating. Therefore, the idea to integrate them into CAT tools
was already proposed by Kay in 1980 (Kay, 1997), where he also argued to make
dictionaries editable and share notes regarding terminology with other translators.
Nowadays, CAT tools offer so-called terminology management, “allowing one to
create, modify, look up, and reuse the translations of individual domain-specific
terms stored in a [Term Base (TB)] or specialized glossaries” (Balashov, 2020).
Such terminology management helps ensure consistency throughout a document
or even across documents of the same company and allows sharing terminology
across translators.

Vandeghinste et al. (2019) conducted an online questionnaire capturing how 187
professionals acquire domain-specific terminology, followed by field observations
of 13 translators and terminologists. Interestingly, they found that 88% collected
their terms manually, and 22% through semi-automatic term extraction programs.
52% stored their terms in their CAT TB, while 43% simply used a spreadsheet. In
field observations however, only 1 out of 16 observed translators actually stored
the researched term in their TB. The advantage of properly storing terms in
the TB is that CAT tools can offer a variety of functionality like highlighting TB
entries in the source and inserting their target language representation through
hotkeys and buttons. TB entries in memoQ can be seen in Figure 2.2.

Translation Memory (TM)

Kay’s visionary proposal further considered looking up compound words or
sequences, which is the idea underlying Translation Memory (TM) technology
that became widespread after its introduction in 1989 by Trados. In contrast
to MT, TM usage is already widely accepted among professional translators
to increase productivity (Screen, 2016). Simply put, TMs are large databases
containing already completed human translations (both from the current user
and shared among large groups of translators) which are matched against the
sentence to be translated to provide a starting point for PE. A good example
where TMs are useful is “prescription drug information which has mandatory
section headings and standard language inside the sections, which varies from
document to document mostly in the names of substances and numerical values
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of various parameters” (Balashov, 2020). Matches can be either exact or fuzzy,
meaning that the exact or similar segments were translated before and can be
used as is or as a basis for the current translation. After PE a TM match or manual
translation, the source and final translation are added to the TM for reuse in the
future. Whereas the basic concept of string matching for TM sounds rather simple,
lots of improvements have been made over the past decades, including ways
to incorporate semantic knowledge like paraphrasing (Utiyama et al., 2011) or
syntactic information (Vanallemeersch and Vandeghinste, 2014). Figure 2.2 shows
how TMs can be used within the widespread commercial CAT tool memoQ.

Usually, when encountering an exact match, the match can simply be used as
the final translation. Depending on the match score for fuzzy matches, it might
make sense to either translate from scratch, or to PE the match. There is usually
an agreement between client and service provider that fuzzy matches below
a specific value, e.g., 75%, need full translation from scratch and are paid as
such (O’Brien and Moorkens, 2014). Often full matches are visualized in green,
while “fuzzy matches are visualized in yellow, orange, or lighter shades of green”
(Vieira and Specia, 2011). Apart from deciding when to use TM matches, Nayek
et al. (2015) investigated the use of color coding to show similarities between
input sentences and TM matches, and thereby guide the translators directly to
the potentially bad parts of the translation proposals. More on this highlighting
is explained in subsubsection 2.3.2.

Another interesting aspect of TM is its ability to ensure consistency: Translators
are confronted with the translations chosen by their peers for similar source
segments, and can therefore stick to project-wide terminology. The increased
consistency alongside the higher throughput lead to a high appreciation of TM
among translators (Moorkens and O’Brien, 2017).

Fuzzy matches in the TM can sometimes be automatically repaired, a concept
called “fuzzy match repair”. Here, the TM is used to retrieve a fuzzy match that
is aligned to the current sentence. If an unmatched term is detected and either
contained in the TB, is a number, named entity, or location, etc., it is automatically
substituted in the fuzzy match (Balashov, 2020).

LeBlanc (2017) investigated how business practices shifted through the intro-
duction of TMs and found that enforcing translators to use TMs decreases the
quality of the resulting translations according to the perceptions of the translators.
Furthermore, they feel less satisfied with their profession, feeling degraded to
assembly line workers (shift in status) that are only required to become more
and more productive. Thus, offering TM as an aid is considered valuable, but
enforcing translators to use it and therefore also raising productivity expecta-
tions is a major downside. We can see this as a consistent pattern, that language
technologies are designed to support translators and indeed do so, however, the
implied expectations in terms of productivity and the reduced creativity and
freedom during translation, heading from being a writer to an assembly line
worker, negatively impact translators’ perceptions of the technologies.
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Translation Memory vs. Machine Translation

While TMs continue to be useful tools for translating segments that are highly
similar to matches in the database, MT is becoming more and more relevant due
to increased performance in recent years. Whereas improvements in MT are
naturally essential, Church and Hovy (1993) argue that it might be even more
important to create good applications using MT than improving MT itself, thus,
emphasizing the vital role of CAT tools for human-AI collaboration.

With the availability of both TM and MT in modern CAT tools, editing segment
by segment usually means switching back and forth between PE TM for matches
above a certain threshold and PE MT when no good TM match was found
(O’Brien and Moorkens, 2014). However, the threshold is not commonly agreed
upon, it depends on factors like the language pair, the type of text, and its domain.
Older research, therefore using outdated MT technology, suggested that PE TM
matches with a fuzzy score in the 85 to 94% range is equivalent to PE MT output
(Guerberof, 2008). MT and TM can also be combined, e.g., by training a binary
classifier to predict if MT or TM is more suitable for PE (He et al., 2010). Apart
from deciding which proposal to use, Simard and Isabelle (2009) explored a
PBSMT model that leverages the top matches from TM. Another interesting
combination strategy by Koehn and Senellart (2010) translates mismatched parts
of a TM match using SMT to fill the gap.

Comparing PE of modern NMT to PE of TM matches, Sánchez-Gijón et al. (2019)
find that PE NMT requires less editing than PE TM matches, but takes longer on
average. In general, TM as a feature is currently still often valued higher than
MT, with 75% of translators believing it to increase throughput and preserve
consistency, while 40% think MT usage is problematic due to the amount of
errors (Moorkens and O’Brien, 2017). However, as stated before, the recent study
by Vela et al. (2019) showed that professional translators choose MT over TM
and translation from scratch 80% of the time, even though the participants did
not agree on which sentences to choose MT for. This shows that MT is gaining
popularity over TM, but suggests that there are no obvious cues when to PE
MT. In the long run, we believe that as MT becomes better and better for more
language pairs, PE of MT will become the major theme and therefor focus on it in
this dissertation. Even though using TM as a basis for sentences that are highly
similar to matches in the database will always yield good results, we expect MT
output to be similarly good on such frequent sentences in the future, and better
than TM on less frequent ones.

Consistency Checking, Quality Assurance, & Concordance Functionality

Furthermore, consistency checkers can be run and show the human translator
if source words have been translated consistently throughout the document.
Quality Assurance (QA) goes a step beyond that by subsuming consistency
checking, but also verifying aspects such as terminology inaccuracies (based on
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TBs), non-translated segments, problems with spacing, typos in proper names,
punctuation checking, and other consistency checks (Vieira and Specia, 2011).

Another support tool is the concordance search, that is, looking up the correct
use of terms and sub-sentences within a large corpus (e.g., the TM or a mono-
/bilingual corpus) to show the correct usage and to provide ideas on how to best
use the words. In their studies, Vandeghinste et al. (2019) found that translators
see concordance search as an indispensable feature. Figure 2.2 further shows in
orange (items 8 to 12) that CAT tools like memoQ can automatically determine
the largest substring that is contained in the TM. Translators can then inspect the
whole TM match and extract relevant parts of the translation for reuse.

Interactive Machine Translation (IMT)

In normal PE of MT, the MT acts first, aiming to produce the single best sentence
it can, and the human then follows as a second stage and corrects the errors of the
MT. Instead of this sequential process, the MT can also be used to dynamically
provide the human with alternatives for the remainder of the sentence when
typing a partial sentence. More generally, Interactive Machine Translation (IMT)
guesses which output translation the human is aiming to produce given both
MT input and manual changes. IMT thus heavily focuses on the concept of
integrating the knowledge of a human expert (the translator) with a MT system,
by facilitating a back and forth communication between the two. A study by
Green et al. showed that translators using such interactive proposals were slightly
slower, however, produced slightly higher quality translations (Green et al.,
2014a,b). Figure 2.4 shows the interface used in their study, providing type-ahead
predictions for a limited amount of following words in a dropdown (D), and
the full proposal in gray in the editing window (E). Using the commercial CAT
tool Lilt, that is based on the works by Green et al., Daems and Macken (2019)
explore the influence of the MT paradigm (SMT vs. NMT) used in IMT. They
find that even though SMT for IMT contains more errors than NMT, there are no
significant differences in either translation time or effort, as NMT errors might
be harder to detect and correct. Nevertheless, subjectively translator’s preferred
NMT over SMT for IMT. Knowles et al. (2019) explore a similar neural system
for IMT but could not find significant performance differences compared to PE.

In the above works, the user still starts with an empty target field and types the
translation while receiving (and potentially accepting) MT proposals. In contrast,
the widely used DeepL5 online translator directly fills the target with the best
translation hypothesis but adds interactivity: Users can click on any word, which
re-runs the decoding process at that step to receive and display a list of alterna-
tives for this position (see Figure 2.5). Upon selecting an alternative, the decoding
is continued from that position onward, again proposing the best translation
hypothesis constrained by the prefix defined through the user selection. Thus,

5https://www.deepl.com/translator
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Figure 2.4: Green et al.’s interface for Interactive Machine Translation: (A) source,
(B) target text, (C) source coverage of the already typed text, (D) autocomplete
suggestions, and (E) full completion suggestion (taken from Green et al. (2014b)).

this is a different level of interactivity compared to the type-ahead IMT approach,
where even more work is offloaded on the MT, while still offering the possibility
to intervene manually.

Figure 2.5: Alternatives proposed interactively in DeepL.

A recent paper by Navarro and Casacuberta (2021) proposes a similar approach,
relying solely on mouse actions as bandit feedback to correct the proposed trans-
lation. The user always sees a full translation proposal and approves prefixes by
positioning the cursor on a word in the sentence, which at the same time tells the
system to provide an alternative (next-most likely) hypothesis for the remainder
of the sentence. If this alternative is still incorrect, the user can explicitly ask for
another suggestion. By simulating users, the authors showed that such a system
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can save a lot of typing; however, an actual study involving real humans (and
correspondingly accounting not just for typing but also for cognitive effort) was
not conducted.

Instead of only extending the remainder of the translation proposal after the
change (i.e., to the right), Weng et al. (2019) propose to manually correct the most
significant errors first, then automatically correct the sentence to the left and
right of that change. The motivation behind this is that by fixing critical errors
first, smaller errors might be fixed automatically by the AI. For this, their system
called CAMIT, offers bi-directional decoding. The general concept was already
outlined by Kay in 1980 (Kay, 1997), where he states that the big problem of
cascading errors in MT could be avoided, when the human fixes the first decision
and thereby resolve a whole chain of errors. When presenting concrete CAT
tools in subsection 2.3.2 (both academic and non-academic ones), we will see that
many of them indeed offer some form of IMT.

Quality Estimation (QE)

Quality Estimation (QE) is the task of automatically predicting the quality of a
usually automatic translation (e.g., MT) without access to a reference translation
(Specia et al., 2009). Note the distinction to quality metrics like BLEU or TER
which rely on reference translations for comparison. Usually QE models are
trained in a supervised fashion, using the source and MT proposal as features
and predicting either the time it takes to PE the MT proposal (based on prior
studies), some manual human rating, or an automatic quality score in comparison
to a reference. Thus, QE models aim to learn patterns from the link between
source, MT proposal, and corresponding quality estimate during training, so
that it can provide accurate quality estimates for unseen (source, MT proposal)
data pairs at prediction time. Instead of training only based on source and MT
proposal, which is called black-box QE, one can also use internal features (e.g.,
its internal confidence) of the MT system, called glass-box QE (Biçici et al., 2013).
In terms of granularity, QE systems can work on the document-level, on the
sentence-level, or on the word-level (Specia and Shah, 2018). While document-
and sentence-level QE require the prediction of only a single quality estimate
(e.g., a percentage or binary ‘OK’/‘BAD’ label), a word-level QE needs to output
a label for every word and gap, as shown in Figure 2.6.

Having reliable QE models can help the PE process: Document-level QE can
be used to quickly assess if an available MT model performs well on the client
document, thus, if PE of MT in general might be suitable for the job or not.
Sentence-level QE can help translators to quickly judge whether it is worth
PE a particular segment or if one should fall back to translation from scratch.
Word-level QE can guide the post-editor within a each sentence.

Turchi et al. (2015) were able to show that sentence-level QE (visualized by
marking sentences in red/green) can indeed speed up PE, but their results were
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Figure 2.6: Word-level QE, with English source (top), German MT (bottom), and
human PE (middle). Three types of quality tags exist: source tags for mistrans-
lated or omitted source words, MT tags for replaced or deleted words in the MT,
and gap tags for missing words in the MT (taken from Kepler et al. (2019)).

only significant for medium-length sentences (5-20 words) with a minimum
quality (0.1 HTER). Using a similar traffic-light system of sentence-level QE in
the Post-Editing Tool (PET, Aziz et al. (2012), see section 2.3.2), Parra Escartín
et al. (2017) found that “good and accurate MT QE, is vital to the efficiency of
the translation workflow, and can cut translating time and effort significantly”.
Teixeira and O’Brien (2017) explore the impact of expressing the scores from
different sentence-level QE models as percentages between 20% and 99%. Their
study with 20 professional translators indicates that just displaying sentence-level
percentage scores is not enough. Instead, one should also visualize word-level
QE predictions to show which parts of the MT output potentially contain errors
and require special attention by highlighting words in red or green or marking
gaps for missing words (Kepler et al., 2019). The IntelliCAT tool (Lee et al., 2021)
offers such word-level QE as one among many features. With it, participants
were indeed slightly faster, however, the differences were not significant (see
section 2.3.2). Thus, further studies on word-level QE are needed to understand
at what quality level it starts boosting translation performance and how it should
best be visualized, which is what we do in section 5.9. This is especially interesting
because wrong QE predictions could lead the human translator to assume the
quality is good even when it is not, thereby speeding up the process at the cost of
translation quality, or the contrary, losing time on searching for a mistake that
does not exist.

Intelligibility

Another feature that has been investigated for CAT interfaces is the use of intel-
ligibility (Coppers et al., 2018; Vandeghinste et al., 2019, 2016). The motivation
is that the large variety of features offered by CAT tools makes it hard to trust a
particular source, especially since the reasoning behind the chosen suggestions
by the AI tools mostly remains unclear to users. Thus, visualizing justifications
for the suggestions of different CAT features has been explored (see section 2.3.2).
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Logging

While less important for production systems, research on CAT systems further-
more requires reliable and extensive logging functionality (Aziz et al., 2012).
Most tools log mouse and keyboard input, others further track pauses in typ-
ing (Lacruz and Shreve, 2014; Lacruz et al., 2012) or eye tracking data (Alabau
et al., 2013a; Carl, 2012) to get a more complete model of the user interactions.
Some tools also offer a replay mode based on the log files, where researchers can
view the whole translation process evolving over time (Alabau et al. (2013b), see
subsubsection 2.3.2).

2.3.2 Research-Focused and Commercial CAT Tools

Now that we have outlined some of the features provided by CAT tools, we
present concrete tools and describe their main advantages. The list provided is
not intended to be complete; it first focuses on academic tools that explore specific
features, and then briefly discusses the tools most widespread in industry.

Translog

Translog development started in 1995, with the idea to transform translation
research by recording keystrokes and afterwards replaying them for analysis
(Schou et al., 2009). The first version implemented this functionality in Microsoft
DOS, however, mouse movement and clicks were not logged. Translog also
allowed replay at different speeds, inspecting the source at different points in
time, or viewing look-ups within the dictionary. The follow-up version, Translog
2000 then had a real user interface programmed for Windows and also recognized
the mouse. In 2005 a research grant to integrate eye tracking was accepted,
allowing the development of Translog 2006 using WinForms and C#, which
offered Unicode and XML support, better log files, and most importantly the
recording and playback of eye gazes. Since then, Translog has been used in
a variety of studies on translation process research, but also for training and
teaching translators.

The follow-up project, Translog-II (Carl, 2012) (see Figure 2.7), is a Windows
application to “record and study reading and writing processes on a computer”.
As its predecessor, it can not only record sessions, but also replay them afterwards
for in-depth analysis. User input is classified as insertion, deletion, navigation,
copy/cut/paste, return or mouse operations. The main improvements to the
earlier version lie in the direct connection to an eye tracker and better analysis
of its data. In particular, Translog-II records gaze positions, fixations, and a
mapping of fixations to characters on screen. Apart from replay, some statistics
about text production and navigation events, as well as pauses, are automatically
created. The tool also supports PE by pre-filling the target view. Both a horizontal
and vertical text orientation between source and target can be configured. If
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alignments between source and target words are provided (by external tools),
Translog-II can also visualize the translation progress by plotting the source
against the target over time with fixations and typed characters.

Figure 2.7: Replay mode in Translog-II, showing gaze positions for the right and
left eye in red and green, and fixations as blue circles (taken from Carl (2012)).

TransType

TransType (Langlais and Lapalme, 2002) is another early project trying to improve
CAT by offering a form of IMT, namely suggesting how an already started
translation probably continues. The idea originated from the TransTalk project
(Dymetman et al., 1994), which aimed to improve Automatic Speech Recognition
(ASR) in translation by leveraging the translation model and language model.
TransType follows a similar idea by using those models in a weighted fashion to
create completion proposals from the vocabulary. These real-time proposals are
supposed to save time by having the user type less. Up to 7 best completions are
presented in a dropdown-like menu appearing at the cursor position. The user
can select from this list using the mouse or page up and down keys.

Calculations assuming an ideal user who minimizes keystrokes as much as pos-
sible using the proposals show that most keystrokes can indeed be saved. A
practical evaluation with users, however, showed that only 1 out of 10 partici-
pants was actually faster with TransType. A reason could be the limited time
of the study for learning to optimally leverage the proposals. Another likely
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explanation is that users do not always watch the screen and therefore do not
notice many of the proposals. Participants also stated that they would like to
receive proposals beyond the single next word to make the TransType concept
more usable. Interestingly, in a second study, almost all of 9 translators thought
they are faster with TransType, even though productivity went down by 17%.
The authors concluded that completions of less than four letters should not be dis-
played, as inspecting and accepting them takes longer than manual completion.
Nevertheless, all except one participant were enthusiastic about the concept of
TransType. A downside, as argued by some participants, might be that TransType
induces a literal mode of translation, as one considers one word at a time.

TransType2 (Esteban et al., 2004) (see Figure 2.8) offers several iterative improve-
ments, but follows the same approach of real-time completions based on trans-
lation and language models, which the authors see as a paradigm “between
fully automatic MT and translation memory”, combining the strength of MT
with the competence of the human. If the prediction is good enough it may
reduce the need to consult other CAT tools like dictionaries, term banks or TM.
In TransType2, which is also built upon TransTalk, a microphone can also be used
for dictation.

Figure 2.8: TransType2 providing real-time suggestions for completion in a
dropdown, and accepted suggestions in red (taken from Esteban et al. (2004)).

Caitra

Caitra (Koehn, 2009a,b; Koehn and Haddow, 2009) acts as a testbed for human MT
interaction by providing 3 kinds of editing modes: (1) suggestions for sentence
completion, (2) word and phrase options, and (3) normal PE.
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In the prediction mode (see Figure 2.9a), the MT makes suggestions for sentence
completion for the next word or phrase, and updates based on user input. Users
can accept predictions using the TAB key, or just type anything else to receive new
predictions. Only a few words are suggested to avoid overloading translators’
reading capacity. This is implemented by matching the user input string against
the MT decoding search graph which is pre-calculated and stored in a database.

(a) Predictions in Caitra.
(b) Options in Caitra.

Figure 2.9: Predictions and options in Caitra (taken from Koehn (2009b)).

In the options mode (see Figure 2.9b), the phrase translation tables from PBSMT
are leveraged: “the most likely word and phrase translation are displayed along-
side the input words, ranked and color-coded by their probability” (Koehn,
2009a). This aims to aid novice translators with unknown words and enhance the
creativity of advanced users by providing alternatives to their active vocabulary.

In the PE mode (see Figure 2.10), the target is simply populated with MT output,
which users can edit. As an additional feature, Caitra shows user changes above
the editing field to possibly alert if content was dropped or added.

Figure 2.10: PE in Caitra (taken from Koehn (2009b)).

For analysis of user activity, Caitra offers a graphical representation of user inter-
action with pauses, typing, deleting, accepting proposals, etc. A study involving
10 paid non-professional translators explored the five conditions (i) unassisted, (ii)
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PE, (iii) options, (iv) predictions, and (v) options combined with predictions. Time and
typing were recorded, and human judges were leveraged to assess translation
quality. In general, participants were faster and achieved higher quality with
assistance, however, the individual results vary: Using PE, 8 out of 10 partic-
ipants were faster and achieved higher quality, using options 4 out of 10, and
using either predictions or predictions combined with options 6 out of 10 performed
better. Interestingly, the subjective feedback ranked the three modes almost in-
versely: the predictions combined with options were perceived best, followed
by options, then predictions, and last PE. A simple time comparison to the unas-
sisted condition reveals that options lead to a gain of only 16%, predictions sped
up the process by 27%, the combination of the two lead to 25%, and PE to 39%
performance gain. This shows that IMT is not necessarily superior to classical PE.

wikiBABEL

wikiBABEL (Kumaran et al., 2008) is a collaborative framework for community-
based translation of content from a stable version in one language to other
languages. As the name suggests, it targets pages like Wikipedia. To support
the translation process, wikiBABEL integrates MT and other linguistic tools
like bilingual dictionaries, but also focuses on supporting community-wide
collaboration. Participating users register with demographic information and the
quantity and quality of their contributions is tracked. The user interface shows
the source and target next to each other in the original format, i.e., looking like
the Wiki-webpage (see Figure 2.11). Initially, the target is filled with MT output.
On mouse-over the alignment between source and target is visualized. The user
can choose any sentence, click on it, and an editing box appears where changes
can be made. The changes made by one user now become the new text version, so
subsequent editors can edit the previous human translation. Through a rollback
mechanism, they can also go back further and decide to edit an earlier version.

PET

PET (Post-Editing Tool) (Aziz et al., 2012) (see Figure 2.12) is a customizable CAT
environment for PE any MT that is provided in XML format, or for translation
from scratch, which focuses on collecting information about the PE process. It
records the time, logs edits and keystrokes at the sentence level, and calculates
the edit distance between MT and its final PE version. After each segment, PET
can be configured to show an assessment window where, e.g., subjective ratings
on the amount of PE required or the accuracy of the MT, can be captured. As it is
intended to be used in a variety on translation and PE studies, it offers a variety
of customization options like defining the text to be displayed in the assessment
window, the amount of segments displayed at a time, or whether segments can
be edited multiple times.
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Figure 2.11: The interface of Wikibabel (taken from Kumaran et al. (2008)).

MateCAT

MateCAT6 (Federico et al., 2014) is a web-based CAT tool offering several lin-
guistic tools, including TMs, TBs, concordancers, and MT (see Figure 2.13). MT
and TM proposals are provided below the editing field alongside their match
score or confidence score, respectively. Concordance and glossary functionality is
provided in separate tabs. MateCAT was particularly designed with the goal of
investigating MT PE in mind. It provides an API to Moses or Google Translate for
SMT, has project management features to create and assign translation jobs, and
has an “intuitive web interface that enables the collaboration of multiple users
on the same project” (Federico et al., 2014). The log files capture edits, timings,
but also which translation suggestion (TM or MT) was used for PE.

CASMACAT

CASMACAT (Cognitive Analysis and Statistical Methods for Advanced Com-
puter Aided Translation)7 (Alabau et al. (2013a,b, 2014a), see Figure 2.14) is an
open source web-based workbench for PE of MT, interactive translation pre-
diction (ITP), visualization of word alignments, providing logging and replay,
and exploring eye-tracking and e-pens. CASMACAT and MateCAT were devel-
oped in close collaboration, where MateCAT focuses on conventional CAT and
CASMACAT on the user interactions.

6https://www.matecat.com/
7https://github.com/casmacat
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Figure 2.12: The interface of PET (taken from Aziz et al. (2012)).

Figure 2.13: The MateCAT interface (taken from Federico et al. (2014)).

Documents to be translated are uploaded in XLIFF format. The MT server then
sends the search graph alongside a list of best translations and word alignments
to the client. The editing is done segment by segment, with the current segment
being enlarged. As an additional support, word alignments are shown for the
cursor position and for the mouse.

Overall, CASMACAT supports different editing modes: In the normal PE mode,
up to three suggestions from MT or TM are provided to offer more options to
the user. Using Intelligent Autocompletion, MT predictions are made after every
keystroke (Barrachina et al., 2009), where the prediction for the remainder of
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Figure 2.14: The CASMACAT interface (taken from Alabau et al. (2013a)).

the sentence is placed to the right of the cursor. As providing and updating
full predictions on every keystroke was shown to be cognitively demanding
(Alabau et al., 2012), CASMACAT only shows words until the next potentially
errorneous word according to confidence measures. Using the TAB key, the
translator can view alternative predictions. As confidence measures, two thresh-
olds are used: one for words likely to be incorrect (based on precision), and
one for words that are dubious (based on recall). An investigation of intelligent
autocompletion in comparison to traditional PE (Sanchis-Trilles et al., 2014) with
nine freelance translators shows that this feature indeed slightly reduces the
required keystrokes, however, is a bit slower than conventional PE. In terms of
quality, the two conditions were comparable. Alves et al. (2016) also compared
CASMACAT’s intelligent autocompletion feature to normal PE. Based on the
data of 16 participants, they find that, contrary to their expectations, normal
PE is significantly faster and requires less keyboard input than translating with
intelligent autocompletion. Recently, a neural version of interactive translation
prediction was evaluated within CASMACAT (Knowles et al., 2019), were PE
was slightly slower than interactive translation (on average 4.79 vs. 4.56 seconds
per token), however, the differrence was not significant.

CASMACAT’s main interface is focusing on mouse and keyboard as input modal-
ities. However, motivated by the way handwriting is used in reviewing of
human-translated text (Alabau and Leiva, 2014), CASMACAT also integrates
e-pens for translation. When activating the e-pen functionality, the source is
displayed above the target instead of next to it, to maximize the drawing area
horizontally. The drawing is handled through MinGestures (Leiva et al., 2013),
an interactive text editing approach supporting very simplistic gestures, namely
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lines of certain orientation and direction, combined with a handwriting recogni-
tion (when the strokes are not recognized as a drawing gesture). Unfortunately,
no evaluation comparing the e-pen feature to normal editing with a keyboard
was published.

Finally, an eye tracker was integrated to log the users’ gaze behavior. For this, a
browser plugin was developed. Note however, that it was not used for interaction,
but only as a data capturing technique.

HandyCAT

HandyCAT (Hokamp, 2015; Hokamp and Liu, 2015) is an open-source CAT tool
providing TM, MT, a concordancer and a glossary. It was developed within
a component-centric design framework for translation interfaces, where each
component can be tuned and optimized individually. An interesting view in
this framework is the definition of “translation resources as functions which
transform text sequences in one language to text sequences in another language”,
thus, comprising for example MT and TM (Hokamp, 2015). The author Chris
Hokamp uses this definition to propose a two-dimensional “Translation Resource
Continuum”, where one dimension ranges between match-based and generation
based approaches, and the other dimension between outputting a word and a
whole sequence, as shown in Figure 2.15. In this continuum, a glossary and NMT
are on completely opposite ends, where the former is purely match based and
generates a single word, whereas the latter is a generative approach resulting
in a sequence. Framing all translation resources within such a continuum, and
allowing the separation into graphical elements and data services in HandyCAT,
enables a quick and easy integration and optimization of individual compo-
nents. HandyCAT was used for some further experiments, implementing QE
and interactive PE8.

CATaLog

CATaLog (Nayek et al., 2015) is a TM-based CAT tool focusing on color coding
similarities between source sentences and TM matches to guide translators by
showing parts likely requiring PE. To provide this color coding, alignment plays
a crucial role: (1) the alignment between the actual source and the source of TM
segments, and (2) the alignment between the TM match source and the TM match
target. These two alignments are combined to figure out relevant parts of the
TM match with respect to the input source sentence. The TER metric (Snover
et al., 2006) is used to analyze the similarity between the input source sentence
and the TM match sources and to produce alignments. Since in PE deletions
can be achieved more quickly than insertions, substitutions, or reordering, the
authors modify TER to weigh deletions as less severe problems than other editing

8https://www.youtube.com/watch?v=Abijz71Lz8Y
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Figure 2.15: Chris Hokamp’s translation resource continuum, where the x-axis
ranges between match-based and generative approaches, whereas the y-axis
defines the output length (taken from Hokamp (2015)).

operations. Color coding of the source sentences shows which parts of the source
input are covered by a match and which are not. Color coding the target helps
translators to choose among 5 provided TM matches and guides translators’
editing process.

CATaLog Online (Pal et al., 2016c,e) is a web-based and extended version of CAT-
aLog. It offers PE of TM, MT, and Automatic Post-Editing (APE) (see Figure 2.16),
and offers logs of user behavior. The TM match is color coded, and upon selection
of a TM match, the source is also color coded as in CATaLog (see Figure 2.17).
Alignments between all kinds of translation proposals are provided: for TM,
MT, APE, and human translations. Logs for deletion, insertion, substitution, and
reordering are provided on character-level. CATaLog Online also supports teams
of translators and project managers in organizing translation jobs. As it shows
several translation aids simultaneously, it can be used to compare different MT
and TM engines, where translators act as voters.

Vela et al. (2019) analyze CATaLog Online in two regards. First, CATaLog Online
was compared to MateCAT in terms of PE performance in a between-subjects
study with 16 translation students, showing that MateCAT was faster. Second,
the quality of the 3 types of proposals (TM, MT, APE) was analyzed. Using the
same participants, the authors found that the selection between MT and APE
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Figure 2.16: The interface of CATaLog Online provides TM, MT, and APE sug-
gestions (taken from Pal et al. (2016e)).

was based on chance as the output is highly similar. Therefore they repeated the
experiment with three professional translators choosing between MT, TM, and
translation from scratch for 200 sentences. As already outlined earlier, in 80% of
the cases, the participants chose MT PE, showing the importance of the concept.
However, the agreement to decide for PE TM, PE MT, or translation from scratch
was low, showing that there are no obvious cues that all translators use to decide
which translation methodology to use. In terms of subjective feedback, CATaLog
Online received positive comments on the TM color coding, the MT quality, and
the arrangement of suggestions. However, the lack of spell checking, keyboard
shortcuts, concordancer, as well as the overloaded interface were criticized.

Kanjingo and its successor

‘Kanjingo’ (O’Brien et al., 2014; Moorkens et al., 2016; Torres-Hostench et al.,
2017) is an iPhone app for PE MT via touch and speech input. In the editor view
(see Figure 2.18), the tool provides a machine translated target text on vertically
stacked tiles, where “the user may click and drag each word tile to change word
order, delete words by clicking the red ‘-‘ button, or add words using the blue ‘+’
button” to either type with the iPhone’s virtual keyboard or use ASR (Moorkens
et al., 2016). The top of the screen always shows the corresponding source text.

Participants provided mostly positive feedback, especially on reordering words
with touch drag and drop. An interesting feature request was a better support for
moving groups of words. PE with voice worked better than participants expected,
voice was preferred when translating from scratch due to low MT quality, but the
iPhone keyboard was preferred when only small changes were required. Overall
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Figure 2.17: Color-coding for TM matches in CATaLog Online (taken from Pal
et al. (2016e)).

the authors found that PE MT is feasible and realistic with a mobile app, although
it cannot replace desktop-based PE. An example use case for the app was seen in
not-for-profit projects. Missed features include the possibility to see all segments
simultaneously, to integrate spell checking, or copy and paste functionality. The
authors hypothesize that productivity would be slower, but the quality would be
similar to desktop-based PE, however, no comparative study was conducted.

A very related CAT tool by partially the same authors was presented for the
desktop setting, again exploring a combination of touch and speech, however,
for translation from scratch, translation using TM, and translation using MT
(Teixeira et al., 2019). Their prototype offers two main editing views: one for
mouse, keyboard, and speech (see Figure 2.19, using Google ASR), and a tile
view for touch (see Figure 2.20), where each word is a tile that can be dragged
around for reordering, or moved on a trash bin for deletion. Besides the main
editing views, functionality for comments, a lexicon, as well as global find and
replace were implemented.

In their two studies of the iteratively refined prototype with a total of 18 partici-
pants, touch input received poor feedback mainly due to two factors: First, their
tile view made reading more complicated. Second, touch insertions were rather
complex to achieve within their implementation (click on previous tile, then at
end of that word, adding a space and then the new word). These limitations were
a result of the prototype focusing on touch for reordering, whereas, only few
reorderings were required during PE in their study.

In contrast, integrating dictation functionality using speech was shown to be
quite useful and even preferred to mouse and keyboard by half of the participants.
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Figure 2.18: The Kanjingo mobile application for PE MT (taken from Moorkens
et al. (2016)).

Only dictation and no voice commands were used in the study since the interface
developers found that commands require too much time.

Interestingly, mouse and keyboard were slowest in their study, dictation the
fastest, and touch in between. However, a quality analysis showed that the
quality with mouse and keyboard was higher, indicating that the participants did
not correct the MT output to the same level of quality. As in other CAT studies,
participants found the lack of spell checking particularly annoying.

Intellingo/SCATE

The SCATE (Smart Computer-Aided Translation Environment) project deals with
many aspects of CAT, ranging from improved fuzzy matching, parallel treebanks,
integrations of TM with MT, QE, terminology extraction from comparable cor-
pora, to the use of ASR in the translation process. The most interesting aspect
for this dissertation is the CAT tool called Intellingo that was developed and
tested as part of the project (Coppers et al., 2018; Vandeghinste et al., 2019). The
overarching goal of Intellingo is to explore the concept of intelligibility to pro-
vide justifications for the commonly used translation aids like TM, MT, TB, or
auto-completion. The authors argue that most translation aids are represented as
black box systems, i.e., showing outputs of different quality without providing
any justification for them.

Figure 2.21 shows the Intellingo interface and its features. As can be seen, the
source is located above a text entry box for the target. Results from a hybrid
MT (combining MT and TM) are shown below, using bold font for the parts
stemming from TM to provide intelligibility for the output. TM is on the bottom
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Figure 2.19: Teixara et al.’s multi-modal CAT tool: The main view for mouse,
keyboard, and speech-based PE (taken from Teixeira et al. (2019)).

right of the MT, with match scores, an icon indicating the match strategy, and
whether a match was used for the hybird MT, as some of the many intelligibility
features. Translation alternatives are shown to the left of the MT, with icons to
intelligibly indicate their source (TM, TB, MT). Occurrences of these alternatives
are also shown in blue in the TM on the right, to indicate the context that they
have been used in. Auto-suggestion is offered and using the alternatives and
their highlights in the TM and MT, the user again receives explanations where
this suggestion is coming from and why it has been made.

For the study, the authors compared an intelligible and non-intelligible version
of the CAT environment. They could not find a significant effect on the user
experience or time to translate, but argue that “translators can better assess
translation suggestions without a negative” (albeit also not positive) impact
(Coppers et al., 2018). Overall, the study shows that intelligibility is only preferred
when the additional justification “benefits the translation process and is not part
of the translator’s readily available knowledge”. Therefore, the authors advise to
make the visibility of intelligbility information configurable.

IntelliCAT

The recently presented tool called IntelliCAT (Lee et al., 2021) combines sentence-
level and word-level QE with interactive translation suggestions (conditioned
on both the right and left context of the marked position), and word alignments
to highlight the link between the source and target and to apply the source
formatting on the target text (see Figure 2.22).
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Figure 2.20: Teixara et al.’s multi-modal CAT tool: The tile view for touch-based
PE (taken from Teixeira et al. (2019)).

A data analysis showed that applying the top-1 suggestion on the errors high-
lighted by the word-level QE, which can be applied fully automatically, improves
translation quality by -2.33 TER or +1.56 BLEU. Manually selecting among the
top-5 suggestions can even lead to quality gains of -6.01 TER or +6.15 BLEU.
An additional user study with nine participants showed that a version of the
tool with QE, translation suggestions, and word alignments reduced the average
editing time compared to normal PE (with text styling) from 688 to 555.66 sec-
onds, showing that the additionally implemented features can boost productivity.
However, a quality analysis of the final text was not conducted.

Commercial Tools

Apart from these tools originating in acedemia, there are naturally many commer-
cial tools in day-to-day use by professional translators. Since only few studies
exist and the features of these tools are to a large extend overlapping, we will
only briefly give an overview of some of the available tools, while acknowledging
that the list is incomplete.
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Figure 2.21: The Intellingo interface, with (A) the source, (B) the target entry box,
(C) MT, (D) alternatives, (E) TM, (F) auto-completion, (G) and (H) previous and
next segments, and (I) a progress bar (taken from Coppers et al. (2018)). Hovering
a translation suggestion highlights its source equivalent in yellow and target
equivalent in blue within all proposals.

SDL Trados Studio SDL Trados Studio9 is the most frequently used translation
environment (Moorkens and O’Brien, 2017). It has a flexible layout, i.e., allows
users to reconfigure the tools to their own needs. According to SDL’s own website,
more than 270000 users translate within SDL Trados worldwide. SDL offers
all well-known translation aids, including e.g., access to multiple MT systems
(including a company-developed one), TM, QA, dictionaries, auto-suggestion,
alignment. The large variety of features has also been commented negatively
as it makes the tool slightly complex to use for new users (Vieira and Specia,
2011). Nowadays, Trados also combines desktop with cloud-based tools to enable
working on various devices. Furthermore, it offers lots of of project management
functionality, which are particularly relevant to coordinate larger projects.

memoQ memoQ10 (see Figure 2.2) is another commercial CAT tool providing
TM, MT, terminology management, QA, predictive typing (also known as auto-
suggest), alignment, and other common features. It is mainly desktop-based, but
also offers online work through Webtrans. Interestingly, memoQ nowadays also
offers an integration for speech dictation: For this, users can download an iPhone
app, dictate text which is transcribed by Apple’s speech recognition, and then
sent to the main memoQ interface on the computer.

9https://www.sdl.com/de/software-and-services/translation-software/
sdl-trados-studio/

10https://www.memoq.com/
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Figure 2.22: The IntelliCAT interface, with (A) the source, (B) the target entry
box, (C) formatting tags showing the source style, (D) automatically created
formatting tags on the target text, (E) sentence-level QE scores, (F) and (G) word-
level QE mapped to yellow or red highlighting of potential errors or a checkmark
for omissions, (H) highlighting of the corresponding source position based on
alignments, and (I) up to five translation alternatives (taken from Lee et al. (2021)).

XTM Cloud XTM Cloud11 focuses on TM technology to speed up the transla-
tion process. An interesting feature is the translation in context, showing a live
preview of the translated content in the original format, which is especially useful
for tasks like website translation. As most commercial tools, XTM also offers
many aids for project management and workflow definition. While XTM does
not provide its own MT engine, they offer connectors to many well-known MT
providers by inserting API keys. Since the tool frames itself as a “Translation
Management System”, which offers lots of functionality like a wide range of file
formats, and the ability to work with tags (for text formatting), it offers good
preconditions to properly extract the text for a (third-party) MT, and afterwards
QA tools can be used to ensure certain quality constraints.

Across Similarly, Across12 is offering MT (provided by Systran), QA, TM, and
terminology management, a preview of the target document in correct formatting,
and a normal two-column segment-based CAT editor. Naturally, it also offers
project management and workflow management functionality.

Wordbee As a professional web-based CAT tool, Wordbee offers lots of func-
tionality for project management, receipt creation etc. However, it also supports
collaboration on translation projects, TM, MT, QA, auto-suggest, and integra-
tion of content storage. Similar to Across, Wordbee also offers context-based
translation, e.g., for translating websites.

11https://xtm.cloud
12https://www.across.net/
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CafeTran CafeTran Espresso13 is a freelancer oriented CAT tool, that is interop-
erable with all other major CAT environments. It supports a wide range of file
formats, offers TM and MT integration, QA, auto completion, and a customizable
interface. Google Translate, DeepL, and other common online resources are inte-
grated by directly loading the corresponding website in the bottom left quarter
of the interface, and having functionality to paste text from the main CAT tool
into these websites and from there back to the main CAT tool. A screenshot of
the interface with Google Translate integration can be found in Figure 2.23.

Figure 2.23: The CafeTran interface with Google Translate integration (taken from
the “First Project with Resources Tutorial” on the CafeTran website14).

Déjà Vu Déjà Vu15 dates back to 1993 and claims to be one of the most user-
friendly tools. Naturally it supports TM (as the name suggests) and MT technolo-
gies. What is interesting is the voice command functionality using Dragon ASR.
Live preview of Microsoft Office documents is also available. For TM function-
ality, type-ahead or how they call it “AutoWrite” functionality is implemented.
Using fuzzy match repair, unmatched parts can be automatically fixed using the
TB, statistical patterns in the databases, or MT.

OmegaT OmegaT (Welsh and Prior, 2014)16 is a Java-based open source CAT
tool financed through donations. It supports many file formats, including Mi-
crosoft Office, Open Office, and HTML pages. To integrate TM technology, the
main editing view is separated into an editing pane, a fuzzy match pane and a

13https://www.cafetran.com/
14https://cafetran.freshdesk.com/support/solutions/articles/

6000108186-first-project-with-resources
15https://atril.com/
16https://omegat.org/
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glossary pane. In separate tabs, the user can view MT, further translations, notes,
comments, and a dictionary. Figure 2.24 shows the interface. While translators
are still expected to translate one segment at a time within OmegaT, the CAT tool
does not follow the traditional approach of showing source and target side by
side or one above the other. Instead, all untranslated text is shown in the source
language, all already translated text in the target language, and only the currently
edited segment is shown in both languages. To allow easier editing of tagged
content, e.g., HTML pages, OmegaT by default copies the source into the target,
so that the translator can keep the tags and translate the text within them. Fuzzy
matches can also be pasted into the target using hotkeys.

Figure 2.24: The OmegaT interface (taken from Welsh and Prior (2014)).

As an open source tool, it has been extended for other needs: iOmegaT for
example integrated timing measurements to be able to compare translation speed
gained by using MT PE in comparison to traditional translation.

Wordfast The original version of Wordfast17, called Wordfast Classic, did not
have an own UI, but instead was developed as a macro-based plugin for Micorosft
Word. While translating, the tool shows each sentence in source and target
language with a delimiter between them. It also offers TM functionality and
keyboard shortcuts for editing segments one after the other. In the end, the
document is cleaned up to contain only one language again. If no TM match is
available, MT can also be used.

17https://www.wordfast.net/

60

https://www.wordfast.net/


Wordfast Pro18 in contrast is a standalone Java-based project with the common
2 column spreadsheet-like layout, editing segment after segment outside of its
original document. It offers a target preview in the correct format and supports
multilingual translation projects (translating into several target languages at the
same time). Wordfast Pro focuses on TM technology, where multiple TMs can be
integrated and prioritized. However, MT is also integrated for segments where
no good matches are retrieved from TM. The QA functionality checks spelling,
grammar, terminology consistency, numbers, and punctuation marks.

Finally, Wordfast Anywhere is a browser based version of Wordfast, allowing
translators to work from anywhere.

Lilt Lilt19 is a commercial tool built upon the studies by Green et al. (2014b),
which investigated a translator user interface focusing on IMT offering many
assistive features like source word lookup, source coverage, auto-completion
suggestions, and full completion proposals. Translators using such interactive
proposals were shown to be slightly slower, however, produce slightly higher
quality translations (Green et al., 2014a,b).

Lilt is based upon these publications and aims for efficient human machine
collaboration for translation through interactive MT/TM proposals. It thus does
not follow the classical PE pattern, where the machine acts first and the human
second to clean up the machine output. Instead, the target field is initially empty,
and the best MT proposal or TM match is shown below. When the user types,
this single proposal is continuously updated based on the partial translation.
In contrast to other commercial CAT tools, it therefore puts MT and TM at the
center of translation and interactively adapts to user actions. Lilt has a vertical
source target layout with a more prominent current segment, which appears less
overloaded compared to most well-known CAT tools (Daems and Macken, 2019).
As additional features, Lilt offers training the MT on the provided TM, pasting
source or machine proposal into the editing field for classical PE, find and replace,
QA, and a glossary with concordance functionality (Daems and Macken, 2019).
It further provides access to style guides, TBs, and offers in-document comments
for collaborative work, and many project management features.

Google Translate, DeepL, & Systran While Google Translate20, DeepL21, Sys-
tran22, and similar tools cannot be considered fully-fledged CAT tools, translators
and non-translators alike use them. Translators working within professional
CAT environments can either just attach these MT services in their environment
or use them as non-professionals would, i.e., by simply going to the respective

18https://www.wordfast.com/products/wordfast_pro_5
19https://lilt.com/
20https://translate.google.com/
21https://www.deepl.com/translator
22https://translate.systran.net/translationTools/
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website to use the MT for gaining inspiration. These web-based interfaces have
the source on the left and the target on the right. There is no segmentation, as the
tools are frequently used for small texts of one or few sentences. After pasting or
typing text in the source field, the language is automatically determined (if not
specified in advance) and the MT kicks in to populate the target text field with
the best MT proposal.

Differences in detail exist between the tools: Google gives more than one transla-
tion, and shows a dictionary and corpora lookup on double click. DeepL offers
not only standard PE but also shows alternatives when clicking on a target word
(see Figure 2.5). The selection further triggers the company’s bilingual concor-
dancer Linguee and displays its results below the target text. Users can also
maintain a glossary to pre-define how certain terms should be translated and
automatically inflects them. Furthermore, the user can choose between a formal
and non-formal translation style (in the pro version only). Systran goes a step
further in this regard and offers multiple proposals from different MT engines
with distinct styles (e.g., generic, finance, IT). Apart from this, the Systram web-
site is also kept rather simple, providing only the two editing fields as well as
dictionary lookup.

Distribution among Translators According to a web-based survey by Coppers
et al. (2018) (181 respondents, 72.38% freelancers), the most commonly used
CAT tool is SDL Trados, followed by memoQ, CafeTran, and XTM. Furthermore,
participants of the main study by Coppers et al. (2018) (26 translators) were
using Trados, MemoQ, Across, CafeTran and Wordfast in daily live. In contrast,
Moorkens and O’Brien (2013; 2014) report on a survey with 231 complete re-
sponses by translators, where by far the most common tool was SDL Trados,
followed by Microsoft Word, and then Wordfast. According to a more recent
survey by the same authors (Moorkens and O’Brien, 2017), 63% use more than
one CAT tool, 72% of freelancers use Trados, while company translators use
Trados in 84% of the cases. Interestingly, 38% still use Microsoft Word for PE,
even though it cannot be considered an actual CAT tool.

2.3.3 User Interface Needs

Even though PE is becoming more widespread, most CAT interfaces still look
very similar to interfaces used for translation from scratch and simply integrate
MT as an additional feature. Therefore, O’Brien and Moorkens (2014) argue
that CAT tools are not properly designed for PE of MT; it remains an interesting
research question how the interfaces can be adapted to further facilitate this
changed task. Another problem is the limited involvement of end-users in
the design process of CAT tools (Kenny, 2017), or, as Lagoudaki (2006) puts it,
that translators are usually “invited to provide feedback on an almost finished
product with limited possibilities for change”. O’Brien et al. (2010) argue that
“UI design has [...] been driven by the needs of the translation client and not
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by the needs of the translator, the ultimate user of the software in question”.
Overall, an assessment of user interface needs “highlights a lack of HCI input
in translation tool development and design, and would suggest a real need
for input from HCI experts” (Moorkens and O’Brien, 2017). Similarly, the MT
research community mostly focuses on developing supporting systems and their
evaluation (Moorkens and O’Brien, 2017), instead of designing and building
whole CAT tools together with users from the bottom up. E.g., most TM research
was motivated by “technical improvement of the TM system and not how the TM
system can best meet the needs of its users” (Lagoudaki, 2009b), a similar trend
to what we now see with MT, which improves constantly but lacks research on a
better integration in the translation process. Moorkens and O’Brien (2017) thus
argue that “systems’ usability and end-users’ demands seem to have been only of
subordinate interest” and that user-centric design has not been common practice.

A study by Koskinen and Ruokonen (2017) explores the emotions expressed by
translators towards the technology they use, e.g., MT and TM, but also “standard
tools” like Google search. For this, they ask participants to write letters to the
technology and cluster them as love letters, ambivalent letters, and break-up
letters. The results show that technology is indeed a central and mostly positive
aspect of translators’ work. Furthermore, the results do not support the notion
of translators being averse to technology and further show no evidence of a
generation gap. On the contrary, translation students were actually the ones with
the most skepticism towards technology, probably due to their lack of experience.
What translators do dislike, however, is non-functioning technology or poor
usability, especially where efficiency and productivity are important. Thus, they
are probably willing to adopt new software if it makes their work more efficient.

Various surveys and field studies investigated the usefulness of different CAT
features: Semi-structured interviews with 9 translators revealed that the most
important aspects of CAT environments are the ease of use, followed by speed
of performance and TM as well as terminology management (Coppers et al.,
2018). Half of Moorkens and O’Brien’s 231 survey participants reported being
dissatisfied with their tools, often due to performance or layout and compatibility
issues (Moorkens and O’Brien, 2013, 2017; O’Brien and Moorkens, 2014). Other
participants are however entirely happy with their tools, pointing to features
like auto-propagation, quality assurance, and concordance search. As feature
requests, their participants mostly want better display of meta-data, like the
source of TM matches and the project they belong to, or wished for improved
glossaries. 70% asked for seeing their performance (e.g., words per hour), but
only for themselves and in such a way that it can be turned off, while 48% want
to see dynamic reporting of their earnings (Moorkens and O’Brien, 2017). The
follow-up interviews in Moorkens and O’Brien (2017) revealed more detailed
ideas, like a participant dreaming of a feature to change the word order (for
English-Portuguese), while another wanted to drag and drop words around. As
discussed in Part II, our multi-modal CAT environment supports exactly that.
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Half of the 231 respondents in Moorkens and O’Brien (2017) are unhappy with
the default layout, coloring, and display of mark-up. 66% state that they rather
customize their tools than using the default editor set-up, which, however, contra-
dicts the online survey results by Coppers et al. (2018) stating that customization
is rarely done. Many participants also mentioned performance issues, poor lay-
out or visibility, outdated UIs, too many updates, formatting problems, as well as
high learning curves for CAT tools, which might be a result of 57% requesting a
clean and uncluttered UI. Vieira and Specia (2011) found that translators value on-
the-fly highlighting of word alignment between source and target. Furthermore,
translators want all information immediately when typing without navigation or
shifting between areas (Lagoudaki, 2009a).

Keyboard shortcuts are considered to increase productivity for 80% of Moorkens
and O’Brien’s (2017) survey participants, where 40% claim to use them very often,
while 29% use them often. 62% would like to have an additional shortcut for
changing the capitalization. Many other keyboard shortcuts are also discussed
in the study, showing the overall trend of a strong mouse and keyboard focus
within translation tools.

Interestingly most negative comments in Moorkens and O’Brien (2013; 2014; 2017)
were made with regards to TM tools, even though the technology is from 1990s
and should have overcome initial issues: 56% report that they like TM and 75%
believe it to preserve consistency and increase productivity.

Overall, the participants in Moorkens and O’Brien (2013; 2014; 2017) were critical
regarding MT, where 56% said that MT was still problematic as it was “still in
baby shoes” or that it is “just horrible”, however, one should take these comments
with care, as MT has improved tremendously since this study. Similarly, only
18% liked MT and only 30% responded that it supports their work. There were
also many mentions of being unhappy with either the MT quality or the MT
support within the CAT tool. In terms of visualization, 70% would like to see MT
confidence measures as a percentage, while 25% would prefer color coding.

Comparing MT and TM, 88% of survey participants would still want to see both
TM and MT, even in cases where the MT confidence score is higher than a fuzzy
match score from TM (Moorkens and O’Brien, 2017). Interestingly, for cases
where no TM is available, 80% would like to see the MT directly inserted into the
target editor, showing that PE MT is important even though they mainly disliked
MT. The threshold for when to use MT over TM is surprisingly low, for many
participants a 65% fuzzy match is still preferred over MT, although research
shows that it requires more effort to PE such matches than MT (Guerberof, 2008).
For integration of TM and MT, methods like copy & paste or drag-and-drop were
requested in Vandeghinste et al. (2019).

71% of participants in Moorkens and O’Brien (2013; 2014; 2017) further requested
dynamic changes of MT proposals based on edits, which is especially important
as participants do not like repeatedly fixing the same MT error. We will discuss
approaches to quickly learn from post-edits in Part IV. 48% of survey partici-
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pants further were positive regarding IMT which proposes the remainder of the
sentence and adapts to changes. Vandeghinste et al. (2019) agree, stating that
translators prefer IMT to classical PE, however, time measures showed that it
was slower (Green et al., 2014b).

2.3.4 Multi-Modal Computer-Aided Translation

In traditional translation from scratch, which mostly encompasses text production
in the form of writing, focusing on mouse and keyboard as input modalities seems
like a suitable approach. However, the availability of high-quality MT, or even
multiple MT proposals from different engines, and the resulting switch to PE
results in major changes in translation workflows (Zaretskaya and Seghiri, 2018).
In particular, PE changes the interaction pattern: While traditional translation
consists of gisting, drafting, and revising phases (Carl et al., 2010), these phases
are interleaved in PE, leading to a significantly reduced amount of mouse and
keyboard events (Green et al., 2013). The task thus changes from mostly text
production to comparing and adapting MT and TM proposals, or put differently,
from control to supervision. Based on this change, we hypothesize that translation
environments need not only be changed on a visualization and tool level, but that
stronger changes in terms of using modalities different than the current standard
mouse and keyboard could facilitate operations that are more important in PE,
such as reordering or replacements. We thus propose to explore multi-modal
input for PE. A very general definition of multi-modal input is provided in the
Handbook of Multimodal-Multisensor Interfaces by Oviatt et al. (2017):

“Multimodal input involves user input and processing of two or more
modalities [...]. The input may involve recognition-based technologies
(e.g., speech, gesture), simpler discrete input (e.g., keyboard, touch),
or sensor-based information (e.g., acceleration, pressure) [...]. They
are far more flexible and expressively powerful than past keyboard-
and-mouse interfaces, which are limited to discrete input.”

In such multi-modal interfaces, modality fusion (Lalanne et al., 2009) guarantees
that modalities can be used in parallel or sequentially without losing informa-
tion during the interaction. While the use of modalities other than mouse and
keyboard within CAT tools opens up lots of potential for further research, some
studies already investigated different input modalities, which we will discuss in
the following sections.

Speech Input

Dictating translations dates back to the time when secretaries transcribed the
dictaphone content on a typewriter (Theologitis, 1998). Nowadays automatic
transcription is gaining popularity, where in 2016 around 15% of translators stated
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to use ASR technology in their work (European Commission representation
in the UK and the Institute of Translation and Interpreting, 2016). An early
approach to integrate ASR into the translation process is the TransTalk project
(Brousseau et al., 1995; Dymetman et al., 1994). It incorporates MT output in the
speech recognition process to increase the recognition performance, especially for
lexical choice. Thus, the MT is not shown to the translator for PE, but only used
system internally. In the TransType2 interface (see Figure 2.8), which also builds
upon TransTalk, a microphone can be used for dictation. Similarly, Khadivi
and Ney (2008) explore different approaches like N-best rescoring and word
graph rescoring to enhance ASR recognition accuracy in a CAT setting, where
apart from the target language speech one can rely on the source language text.
The same idea was used within the SCATE project (Vandeghinste et al., 2019)
(see subsection 2.3.2) where the accuracy of ASR was boosted “by making use
of the extra information present in the translation model and by adapting the
language model to the current domain or topic”. ASR usually does not yield any
punctuation, so SCATE further integrated punctuation prediction on the ASR
output to make it more suitable for translation interfaces.

SEECAT (Martinez et al., 2014) integrates speech input into the CASMACAT
workbench (Alabau et al., 2013a) (see Figure 2.14) for PE, allowing the user to
press a button and start dictating text. The text is then placed at the cursor
position. If a text range is selected, the dictation replaces the text span. Similar to
TransTalk and SCATE, the MT hypothesis is used to rescore the ASR hypothesis,
thereby aiming to improve ASR accuracy. A pilot study with two participants
showed that PE with both ASR and typing was faster than PE or translation from
scratch using only typing or only ASR. In a follow-up study with 10 professional
translators, PE with typing-only and PE with typing and ASR were compared:
6 participants were faster when using ASR, while 4 were not. All reported that
ASR is a promising feature, but that it might take time to learn. The authors thus
argue that speech recognition combined with typing could boost productivity
and that dictation might especially be useful when more text requires changes.

Mesa-Lao (2014) surveyed PE trainees before and after introducing speech tech-
nology to CAT. The results suggest positive views on ASR, where participants
stated that “they would consider adopting [it] as an input method”. The use of
ASR turned out easier and more effective than previously thought, involving less
fatigue. However, participants would “use ASR as a complement rather than a
substitute” to classical methods.

Zapata et al. (2017) investigates effects on productivity and translation experience
of four conditions: Translation Dictation (TD; which means dictate, then tran-
scribe, then PE the transcription); PE in dictation mode (which means dictating
approved sentences into a dictaphone, followed by manual transcription); TD
with ASR; PE with ASR. All texts were printed-out and presented in hard copy,
thus, no real CAT interface was used. In terms of time, TD with manual tran-
scription was slower than TD with ASR in 3 out of 4 cases, as the transcription
time counted for this analysis. For PE, the use of ASR was faster than manual
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transcription because revision of ASR is faster than the transcription process. No
clear trend between translation dictation and PE dictation (both with manual
transcription) was found. However, there was a big mismatch between what was
most productive and what felt most productive: Most participants felt that they
were faster when using ASR for translation from scratch than when using ASR
for PE, while the contrary was true in actual time measures. Thus, the small-scale
study showed that the use of ASR in comparison to manual transcription speeds
up both translation from scratch and PE, even though the revision phases take
longer in the ASR conditions.

Dragsted et al. (2011) compared written translations to sight translation (reading
the source and speaking the translation in the target language) with and without
ASR. In their study with translation and interpreting students, written translation
was slowest, sight translation without manual transcription the fastest, and sight
translation with ASR in the middle but closer to written than to sight translation.
The quality, as judged by 3 evaluators, was highest with 3.2/5 for written, 2.8 for
ASR, and 2.7 for sight translation. The majority of speech recognition problems
was caused by the student’s mispronounciations, as they translated into their
second language.

Studies with the Kanjingo app (O’Brien et al., 2014; Torres-Hostench et al., 2017)
(see Figure 2.18) show that PE with voice worked better than participants ex-
pected, that voice was preferred to the iPhone’s virtual keyboard when translating
from scratch due to a low MT quality, but that the keyboard was preferred for
small changes.

Teixeira et al. (2019) (see subsection 2.3.2) showed that dictation functionality
was quite good and its combination with mouse and keyboard even preferred to
mouse and keyboard alone by 4 of the 8 participating professional translators.
One should note that only dictation and no voice commands were used in the
study since the interface developers found that commands require too much time,
and therefore only added a dictation functionality. As an ASR engine, Google
Voice was used. In their study, mouse and keyboard took longest, followed by
touch, while dictation was the fastest. However, a quality evaluation showed
that participants did not correct to the same level of quality using the different
modalities, indicating that they traded-off quality for time.

After several decades of research showing that in some circumstances voice input
can be beneficial to the translation process, professional CAT tools like memoQ
and MateCat are now also integrating ASR: memoQ does so in combination with
an iPhone App that uses Apple’s speech services and focuses mainly on operating
the interface with commands (undo/redo/copy source to target/copy translation
suggestion to target, etc.) as well as dictation23. MateCat uses the Google ASR
through the browser, however, it can only insert dictated text at the end of the
target, does not allow placing text at different cursor positions or replacing words
with it, and does not support dictating capitalization or punctuation marks.

23https://blog.memoq.com/hey-memoq-frequently-asked-questions
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In contrast to these works, our CAT tool presented in Part II supports speech
commands to edit MT output directly during PE. Furthermore, it supports
simplified speech commands when text or positions are already defined through
a selection process based on other interaction modalities, thereby combining the
strengths of exact positioning of mouse/touch/pen with the speed of uttering
speech commands.

Pen Input

Compared to speech input, pen input has received way less scientific attention.
An early approach by Vo and Waibel (1993) combines 8 hand-drawn gestures
(e.g., circle, opening parenthesis) with a speech recognizer detecting 11 keywords
(e.g., delete, word, line) for text manipulation. Even though the set of recognized
entities is limited, the combination of speech and pen offers a vast amount of
flexibility: For example, a user can encircle a word and say “delete”, or mark a
paragraph, speak “move”, and mark the destination. The vision paper by Alabau
and Casacuberta (2012) proposes to rely solely on handwriting with e-pens for
PE sentences with few errors in place, showcases symbols that are common for
proofreading, and discusses how these could be used for insertions, deletions,
transpositions, etc. Within the CASMACAT tool (Alabau et al. (2013a,b), see
Figure 2.14) users can activate the e-pen mode, where the target is placed below
the source to maximize the width available for drawing. CASMACAT relies
on MinGestures (Leiva et al. (2013), see Figure 2.25), an interactive text editing
approach supporting straight lines of different angles and directions as gestures.
Everything not recognized as a drawing gesture is sent to a server for hand-
writing recognition. However, no formal evaluation of the e-pen feature within
CASMACAT was conducted. A follow-up paper (Alabau et al., 2014b) discusses
how the accuracy of handwriting recognition could be improved by constraining
the search based on the MT hypothesis, the source, or the already translated
sentence, which is a similar approach to the ASR recognition improvements
discussed in TransTalk (Brousseau et al., 1995; Dymetman et al., 1994).

Figure 2.25: MinGestures (Leiva et al., 2013) for interactive text editing in CAS-
MACAT (taken from Alabau et al. (2013b)).
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Zapata (2016) proposes interactive translation dictation (ITD) which involves
interacting with voice, touch, and pen enabled devices, such as touch screen
computers or tablets. However, the system that was informally evaluated con-
sisted simply of a touchscreen computer for translation within Microsoft Word
and a (unconnected) tablet as a second screen for research. So while in theory
participants could use touch and stylus, the interfaces were not designed for
this purpose and no actual CAT tool was used. This could also explain why
participants were slower with the ITD approach than with mouse and keyboard.
Also, the study did not involve professional translators and used plain transla-
tion without any TM or MT. Only a browser was available to look up terms etc.,
which limits the functionality of touch and speech.

Our CAT interface, presented in Part II, supports handwriting with a stylus,
including options to delete and add characters or words, as well as gestures for
creating sufficient space to write into. Furthermore, words can be reordered with
the pen through simple drag and drop. All pen functionality is evaluated in
comparison to other input modalities to draw conclusions about its usefulness.

Touch

As discussed above, Zapata’s (2016) study of voice and touch enabled devices
also allowed finger touch input. However, no formal evaluation was conducted,
and no proper touch input inside a CAT tool was used. Instead his work simply
relied on the operating system’s virtual keyboard on a tablet.

The Kanjingo mobile application (O’Brien et al., 2014; Torres-Hostench et al., 2017)
(see Figure 2.18) allowed touch input for PE, where all words were presented as
vertically aligned tiles, that could be reordered through drag and drop. Touch
editing was possible on a tile level: Clicking the ‘-’ removed words, while clicking
‘+’ allowed entering words with the iPhone virtual keyboard, which could also
be used to edit the text inside a tile. Especially the reordering functionality with
touch was liked by the study participants. A notable feature request was a better
support for moving groups of words.

The desktop-based CAT tool by Teixeira and partly the same authors as Kanjingo
(Teixeira et al. (2019), see Figure 2.20) offered a similar touch mode with words in
a tile view that can be reordered by drag and drop. Due to the additional space
in the desktop setting, these tiles were not stacked vertically but placed one after
the other as in normal text. However, as discussed before, reading was perceived
as more complicated in the tile view and touch insertions, which required a click
on the previous tile, a cursor placement at the end of that tile’s word, entering a
space and then the new word, also received poor feedback. For deletion, users
could drag tiles on a bin icon. The tool also offered an on-screen virtual keyboard
for touch interaction, which interestingly was perceived as good by a participant.

Our explorations, presented in Part II also allow reordering words as in Teixeira
et al. (2019), however, without showing them in a tile view to enhance readability.
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Furthermore and identical to our pen implementation, finger touch can be used
for handwriting, including drawing gestures for deletion, thereby supporting all
PE operations directly with the finger without any virtual keyboard.

Gesture Input

Hand gestures are a very intuitive and natural way of interaction (Ortega and
Nigay, 2009; Sharma and Verma, 2015) and are thus investigated as an input
modality in a variety of contexts. Suitable hand gestures depend on the appli-
cation type and context (Nielsen et al., 2003; Wachs et al., 2011; Weichert et al.,
2013), thus, there is no universally appropriate gesture set. Gestures must be
easy to learn and memorize and metaphorically meaningful (Wachs et al., 2011;
Weichert et al., 2013). A gesture lexicon should therefore be concise and executing
the gesture should be comfortable to avoid muscle tension especially over long
periods (Wachs et al., 2011).

To the best of our knowledge, no study or prototype has explored gesture interac-
tion for PE or translation in general. Instead, most research focused on topics like
remote controlling interfaces, e.g., TVs or cars, whereas only few papers work
on document editing with hand gestures. One example is the idea presented
in a patent by Rives et al. (2014) to use gestures to perform the operations cut,
copy, paste, select, undo, and delete to edit a document. Furthermore, Ortega and
Nigay (2009) found that using finger pointing to replace the mouse significantly
reduces the switching time compared to keyboard and mouse (almost to zero)
which suggests that an exploration of gestures for PE might be relevant.

Eye Input

Within the CAT tool literature, in contrast to human translation research, eye
tracking received only minor attention: Translog-II (Carl, 2012) focused on cap-
turing translation sessions, including gaze tracking, and allowed to replay these
sessions with some analytical plots. Similarly, the SEECAT (Martinez et al., 2014)
tool, based upon CASMACAT (Alabau et al., 2013a), logs eye tracking data,
however, only to collect data for process-oriented translation research.

To the best of our knowledge, eye tracking has to date only been used to study
the translation and PE process, but never as an input modality to control the
translation environment. We nevertheless hypothesize that the combination of
eye input with typing or speech could be a valuable extension for CAT tools, and
present an implementation thereof in chapter 5.

Interesting works outside of the translation domain that might be suitable for
CAT tools include the ReType approach by Sindhwani et al. (2019). ReType
tackles the problem of context switching between keyboard and mouse, which is
known to not only cause productivity loss but also leads to RSI (Repetitive Strain
Injury) (Dernoncourt, 2014). ReType is a “gaze-assisted positioning technique
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combining keyboard with gaze input based on a new patching metaphor”: The
user types a correct prefix (which can be just a single character), then the text
which should be replaced, then a correct postfix. Through the pre- and postfix,
the algorithm identifies matching strings, and when the user looks at one of the
matches and presses ‘enter’ the change is applied. The approach can also be
used for positioning the cursor (write exact match, look at it, ‘enter’), or text
selection (by positioning at beginning, followed by a special key, then positioning
at the end). One of the main results is that in terms of motor times, ReType is
significantly faster than the mouse. Furthermore, 22 out of 24 participants in
the study preferred ReType as they had to use the mouse a lot less due to the
eye-based placement.

Another approach that could be interesting for the task of PE is the Gazemarks
approach by Kern et al. (2010), addressing the problem of attention switching.
While the paper did not consider the translation task at all, it might well be
applied in this context: In PE, the translator needs to frequently switch the
attention between source and target of the current segment, but also look back and
forth to understand the context. Gazemarks could support this by memorizing
the last fixation in each attention area (source, target, context), and highlight this
position to make attention switches faster and less cognitively demanding by
offloading the effort of memorizing where they left of. In their original study,
they were able to show faster completion times in a simple visual search task. We
thus also integrated the Gazemarks idea into our own CAT environment, as will
be presented in chapter 5.

Naturally, one can also imagine gaze input to be useful for other tasks within
CAT tools, e.g., for automatic scrolling or researching terms and phrases.

2.3.5 Summary

This section provided an overview of CAT environments. First, we looked at the
individual features that are common among many CAT tools, e.g., alignments,
TM, MT, IMT, or QE. Then we looked at the most relevant CAT tools from
academia and gave an overview of commercial tools. We saw that while academic
tools have explored particular features in detail, they are usually much more
narrow in support tools offered. In contrast, the commercial tools are very broad,
supporting a wide range of tools, at the cost of complexity of the interface and
lagging behind on newest academic findings. Afterwards, we discussed studies
exploring user interface needs, that highlighted the positive and negative aspects
of current CAT tools, and showed that the tools were often designed without
proper involvement of translators, thus, driven by advancements in the latest
support tools rather than by a proper integration into the translation process.
This can also be attributed to the rapid advances in MT and NLP research and
the comparatively few studies on the HCI aspects of translation technologies.
The advances on the tool side often lead to clients or LSPs demanding the latest
features, without pursuing detailed integration studies with human translators.
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Finally, we focused on this thesis’ main research question, namely the use of
modalities other than mouse and keyboard for the PE process, discussed why
such approaches might become more and more relevant with better MT outputs,
and which modalities and modality combinations have already been explored in
the literature. We start Part II with a well-structured analysis of a considerable
variety of input modalities for PE within CAT environments (see chapter 3),
which we use to guide subsequent development and testing of our multi-modal
CAT environment (see chapters 4 and 5).

2.4 The Cognitive Dimension of Post-Editing

Naturally, PE not only changes the required interactions, but also the mental
processes before and during editing. The translator needs to continuously scan
the MT proposal and source text, potentially combined with TM output, for
mistakes and chunks that can be reused, meanwhile thinking about the surround-
ing context, the target audience, perform corrections to individual parts, and
make a plan to assemble an overall translation. Thus, PE can be seen as a highly
demanding task. In this section, we will first introduce cognitive load theory,
then talk about measures that have been used in the literature to estimate CL.
Among these measures, some have already been explored within the translation
domain, which we will cover in the following section. Then we will look at the
user perspective: are users more concerned about some sensors than others for
estimating CL? Finally, we will discuss a domain where CL is not only measured
but used for adaptations, since we want to propose the concept of CAT tools that
can react to their users’ perceived CL, and thereby avoid cognitive overload.

This section is most relevant for our work on RQ2, which is presented in Part III.

2.4.1 Cognitive Load Theory

Cognitive Load (CL) theory (Paas and Van Merriënboer, 1994; Sweller et al.,
1998) has been developed in psychology and is concerned with an efficient
use of people’s limited cognitive resources “to apply acquired knowledge and
skills to new situations” (Paas et al., 2003). The theory assumes that humans
have “a limited working memory which interacts with an unlimited long-term
memory” (Paas et al., 2003). CL theory comes from the educational context,
where learning is defined as the creation of schemas in the working memory,
which then go over into long-term memory where they can be reused without
additional strain (Leppink, 2017). In cases of cognitive overload, that means
when working memory capacity is overloaded, learning is impeded, or in other
contexts, errors increase (Paas et al., 2003).

CL theory distinguishes three types of CL (Leppink, 2017; Paas et al., 2003):
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• intrinsic CL, which is the difficulty of the task itself, like a simple arithmetic
addition compared to solving an integral equation. The lack of automation
or cognitive schemas about the content, which leads to more elements
needing processing in working memory, as well as the interactivity between
elements, lead to intrinsic CL.

• extraneous CL, which is load stemming from other factors that do not con-
tribute to the actual task, e.g., dividing attention between information
sources, or the load introduced by a bad design of learning materials. Thus,
extraneous CL should be minimized in favor of freeing up working memory
for intrinsic or germane CL. Note, however, that a representation minimiz-
ing extraneous CL for novices might be unsuitable for experts and therefore
lead to extraneous CL for experts.

• germane CL, which is the load induced by the construction of learning
schemas, so the load by a deliberate engagement in cognitive processes
beneficial to learning, like self-explanation of content.

Usually the total amount of CL is measured as it is not clear how the three
can be distinguished (Leppink, 2017). Furthermore, a variety of researchers
have modified the model to a dual model that only distinguishes intrinsic and
extraneous CL and consider germane CL as a part of intrinsic CL (Leppink, 2017).

CL can also be described across the time domain: Paas et al. (2003) distinguish
instantaneous load, peak load, average load, accumulated load, and overall load.
Here, instantaneous load is the most immediate measure and reflects the load
at every moment in a task, while peak load is the highest instantaneous load,
average load is the average instantaneous load, and accumulated load is the
total amount of load. Last, overall load represents the individual’s perception of
mental effort, that is, the experienced load.

2.4.2 General Cognitive Load Measures

While CL theory comes from psychology, the measurement of CL has especially
been studied in the field of HCI. The approaches can be roughly divided into
four categories (Chen et al., 2016): subjective measures, performance measures,
physiological measures, and behavioral measures, as depicted in Figure 2.26.

Subjective Measures

Subjective measures are based on the assumption that subjects can self-assess
and report their cognitive processes after or during performing a task (Paas and
Van Merriënboer, 1994). Introspection and reporting of CL was shown to be
sensitive to small differences and reliable (Paas et al., 2003). Naturally, asking
users within or after tasks does not capture real-time changes in CL (Moissa
et al., 2019). Thus, it is mostly used to capture average or overall load (Chen
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Figure 2.26: Overview of cognitive load measures.

et al., 2016). As scales, Likert scales of different ranges (5, 6, 7, 9, 10) have been
proposed (Moissa et al., 2019). Such introspection is often used as a ground truth
to evaluate how well CL can be assessed by other means, such as physiological
measurements. Furthermore, Van Gog et al. (2012) have shown that timing and
frequency of effort ratings affect rating results and that asking users after each
task (of limited duration) is preferable.

Performance Measures

Performance measures assume that when working memory capacity is over-
loaded, a performance drop occurs due to the increase in overall CL (Chen et al.,
2016). In the learning context, such measures could be grades, percentage of
correctly answered questions, time spent on a task, etc. (Paas et al., 2003). Within
translation, it could be the translation/PE time or the translation quality. An-
other measuring approach frequently deployed in various domains is a dual-task
(Chen et al., 2016), where the subject is asked to perform a secondary, dissimilar
task additionally to the primary one. The performance on this secondary task
is then assumed to change as different loads are induced by the primary task.
However, this measuring approach can only be used in controlled experiments
and is not feasible for real-world use cases.

In a performance-oriented society, one might all too easily trust in performance
measures, even though they too have some drawback. For example, humans can
maintain their performance under rising CL over a period of time (Hockey, 1997).
This however, comes at the cost of additional strain and fatigue. A problem with
time measurements, as pointed out by Moissa et al. (2019), is that it does not
allow to distinguish internal and external conditions, e.g., whether the user is
tired or not or in a noisy environment. Furthermore, quality and time can often
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be traded against each other, especially in post-editing. Finally, quality metrics
are not easily applicable in every domain: e.g., in translation there is no fully
reliable quality estimation without a reference translation or human ratings. In
PE, researchers have often used the MT quality as a proxy for PE effort, which
naturally is often related, but cannot be considered equal to CL: Consider e.g.,
very bad MT proposals that are still very easy to PE due to the simplicity of the
segments, or the opposite, a very high MT quality where spotting the error can
remain difficult and induce a high CL.

Physiological Measures

A lot of research has been conducted on physiological measurements, which
assume that human cognitive processes can be seen in the human physiology
(Kramer, 1991). Demberg and Sayeed (2016) explain the origins of physiolog-
ical measures: When the load rises, the brain stem and in particular the locus
caeruleus are signaled that more processing resources are needed. This area
then releases the neuro-transmitter norepinephrine, which enhances information
processing, while also affecting the pupil muscle, the heart rate, and the skin
conductance as a side effect. An advantage of physiological measures is that
these can be measured at high frequency and thus can capture variation of CL
over time (Chen et al., 2016). This section provides an overview of the measures:

Eye tracking is frequently used for physiological CL measurements: Due to an
effect called task-evoked pupillary response, the pupil diameter increases with
higher CL (Beatty, 1982; Iqbal et al., 2004; O’Brien, 2006a). However, the pupil
size is impacted through pupillary reflexes to changing light conditions by a
magnitude more than by the task difficulty (Pfleging et al., 2016). An approach
to detect CL based on pupil diameter independent of light conditions is called
Index of Cognitive Activity (ICA) that measures the frequency of rapid dilations
instead of the overall diamter (Marshall, 2002; Demberg and Sayeed, 2016). As
eye tracking has been frequently used in the translation domain for CL studies,
we will provide more detail in section 2.4.3.

Apart from the eyes, the skin also provides information about the user’s cog-
nitive state. Galvanic Skin Response (GSR) can be used to determine whether
a user feels stressed (Villarejo et al., 2012) and provides information about the
CL (Shi et al., 2007). Here, the increased level of sweat lets skin conductance
rise as task difficulty is increased. Yamakoshi et al. (2008) further explore remote
measurements of the skin temperature using thermal cameras by comparing
the truncal and peripheral skin temperatures, which are impacted to a different
degree by a change in CL (e.g., the nose temperature drops).

Further commonly used indicators rely on the cardiovascular system: blood
pressure (Yamakoshi et al., 2008), heart rate (Mulder, 1992), and especially Heart
Rate Variability (HRV), which is a measure of “the oscillation of the interval
between consecutive heartbeats” (Rowe et al., 1998), have been shown to correlate
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with CL. Here, as CL increases, the heart rate goes up, while HRV goes down.
Combinations of such measures with respiration measurements have also been
explored: Chanel et al. (2008) combined several measurements to optimize the
task difficulty in the gaming context.

Research on so-called brain-computer interfaces shows how brain activity can
be used to adapt software systems to the user’s cognitive state, e.g., by de-
tecting emotional stress using Electroencephalography (EEG) (Hosseini and
Khalilzadeh, 2010) or with less invasive functional Magnetic Resonance Imaging
(fMRI) (Solovey et al., 2012). EEG is for example measured in the power spectrum,
where alpha frequencies are reduced and theta frequencies increased as CL rises
(Klimesch, 1999).

Behavioral Measures

Last, behavioral measures can be extracted from user activity while performing
a task (Chen et al., 2016). These include eye features, mouse, pen, or keyboard
input, speech and linguistic features, changes in gait or facial expressions, etc.

In the context of PE (without additional input modalities), mouse and keyboard
input-based features, like mouse movements and trajectories in the temporal and
spatial domain are especially interesting, as these were shown to correlate with
CL (Arshad et al., 2013).

Other input modalities allow further behavioral features to be engineered, e.g.,
pen input allows the measure of angle-based, space-based, centroidal, temporal,
pressure-based, trajectory-based, and other features (Prange et al., 2018).

For speech interfaces, the length of silent and filled pauses, as well as the response
latency increase with rising CL (Chen et al., 2016; Khawaja et al., 2007). The
authors also found that among the linguistic features explored, positive emotions,
agreement words, first-person and third-person singular pronouns decreased as
CL increased.

Apart from the physiological features captured with eye trackers, these devices
can also be used to detect behavioral changes: the blink frequency and duration
decrease with increasing load (Van Orden et al., 2001). Furthermore, Chen and
Epps (2013) as well as Stuyven et al. (2000) showed that fixations and saccades (the
rapid movement between fixations) can also be used for CL predictions, where
the fixation frequency and duration, as well as the saccade distance increase as
the tasks get more complex.

Furthermore, recent improvements in computer vision using deep learning can
be used to automatically extract emotions from videos (Kahou et al., 2016), which
could be an indication of cognitive processing as well. However, simple fea-
tures like the head pose have also been shown to correlate to CL when learning
(Asteriadis et al., 2009).
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Multi-Modal Measures

Multi-modal approaches, investigating a variety of sensors simultaneously, have
also been presented: As an example, Guhe et al. (2005) combine heart rate, GSR,
skin temperature, blinking, gaze and pupil-related measures, as well as head
movement, mouth openness, and click pressure to estimate the workload during
a so-called N-back task. In N-back tasks, letters or numbers appear one after
the other on a screen, thereby forming a sequence. Participants are asked to
press a button whenever a letter is identical to the letter N steps earlier, thus, the
difficulty can be easily increased by switching to a higher N task (e.g., from a
2-back to a 3-back task). In general, several studies showed that multi-modal
approaches increase robustness of CL estimation as the individual modalities can
compensate and complement each other (Chen and Epps, 2013).

2.4.3 Cognitive Load Measurement in Translation

While the previous section provided a high-level overview of existing CL mea-
sures, this section goes into more depth for those measures that were already
explored in the translation domain. Overall, translation can be seen as a horizon-
tal process, where translation simultaneously happens during comprehension
(as opposed to a vertical process where comprehension happens first followed by
reformulating, Macizo and Bajo (2006)). The increased use of working memory
resources (likely due to the simultaneous activation of both languages), makes
translation a particularly interesting domain for CL studies. Krings (2001) di-
vided PE effort into three types: temporal, cognitive, and technical effort. In PE,
cognitive effort involves the cognitive processes required, such as spotting errors
and planning corrections. Technical effort means the effort for typing, copy and
paste, etc. to transform the MT output into the final translation.

Time

Temporal effort on the other hand is simply the overall time required for PE,
which Krings (2001) sees as a very important indicator of PE effort as it contains
both cognitive and temporal effort. A frequently used performance measure
therefore is the translation throughput or PE duration.

Subjective Measures

Krings (2001) further utilized think-aloud protocols to capture cognitive effort;
however, as pointed out by O’Brien (2005), post-editors constantly reporting
what they are doing (a) slows down the process and (b) changes the process
itself. Vieira (2014, 2016) instead used the 9-point scale proposed by Paas and
Van Merriënboer (1994) for the translator to post-hoc judge the mental effort

77



of PE a segment, which is a simple 9-point scale, ranging from “very, very low
mental effort” to “very, very high mental effort”.

Pauses in Typing

O’Brien (2005) explored correlating extended pauses in typing behavior to poten-
tially difficult source text features. In a follow-up analysis (O’Brien, 2006b) she
analyzed this hypothesis on source segments comprising characteristics that are
known to induce different effort, but concluded that “while pauses provide some
indication of cognitive processing, supplementary methods are required to give
a fuller picture”. A problem was the use of the pause ratio (PR) (the total pause
time in a segment divided by the total time in a segment), where lots of short
pauses might not have a big impact on the total pause time but often occurred
during cognitively challenging tasks.

Lacruz and Shreve (2012; 2014) therefore analyzed clusters of shorter pauses
instead of examining long pauses. Their metrics called Average Pause Ratio (APR)
(“the average time per pause in the segment divided by the average time per
word in the segment”) and Pause to Word Ratio (PWR) (the number of pauses in
a segment divided by the number of words in a segment) could be correlated to
technical effort (the required mouse and keyboard actions) measured as HTER,
arguing that “it is likely that in many situations technical effort and cognitive
effort will be related”. A direct correlation analysis in comparison to CL in the
psychological sense was not performed.

Mellinger (2014) focused on cognitive effort when using TM by correlating
keystroke logs and pause metrics to a subjective measure of translation quality
on a 5-point Likert scale. He found that the cognitive effort in terms of APR was
highest when translating from scratch, followed by fuzzy matches and finally
exact matches.

Eye Tracking

An early comparative study between PE and manual translation using Translog
by Carl et al. (2011) showed that in translation, fixation counts are generally
higher than in reading with more regressions (i.e., backward movements of the
eyes happening during reading to revisit misidentified words). More fixations
were found with more complex texts. Gaze times were used as simple indicators
of cognitive effort, where more fixations and longer gaze times were found on
the target text in PE. Therefore the authors argue that there is more cognitive
effort on the target side. In contrast, more effort for reading and understanding
the source is required in manual translation. However, the authors do not argue
whether overall effort is higher in translation from scratch or PE.

O’Brien (2006a) proposed pupil dilation as a measure of CL, as this feature has
been shown to correlate with CL in other domains. She focused on correlations

78



between percentage change in pupil dilation and different translation aids. Trans-
lation from scratch required the highest CL (as per pupil diameter), exact matches
the least effort, and MT PE similar to fuzzy matches between 80 and 90%. A
general drawback of the pupil diameter is its delayed reaction to the increase of
CL and dependence on very static light conditions.

Doherty et al. (2010) also explored eye tracking as a means for MT evaluation
by measuring different features while reading MT output and correlated it with
human evaluation, thus, measuring MT quality for reading. They found that
gaze time and fixation count correlate with human evaluation of MT quality;
however, fixation duration and pupil dilation were less reliable in their study.
While these correlations are quite interesting, they do not capture CL but MT
quality. Furthermore, the focus is on a reader instead of a post-editor, thus, not
targeted towards post-editing but direct usage of MT output.

The ICA, a pupil dilation-based measure, has also been correlated to linguistic
processing difficulty in a variety of experiments (e.g., investigating grammatical
gender mismatch or semantic anomalies, Demberg and Sayeed (2016)). As dis-
cussed above, the ICA separates changes in pupil size resulting from light reflex
(which are larger and slower) from the rapid and small dilations that are driven
by CL, and well reflected linguistic processing difficulty in the experiments.

Multi-Modal Cognitive Load Measurements

Koglin (2015) uses eye tracking (total fixation duration) and keylogging data to
investigate the difference between translating metaphors manually or through
PE. The results of a between-subjects study suggest that cognitive effort is lower
when PE: PE was significantly faster, having significantly less insertions, but
no differences in deletions. She also replicated the findings by Carl et al. (2011)
that fixations are longer on the target for PE and on the source for manual
translation. Furthermore, total pause duration was lower, albeit this can simply
be attributed to the twice as long translation times in manual editing. Thus, due
to the increased speed in PE, less pauses and insertions were made since a draft
text already exists. The authors argue that the fewer pauses indicate a lower CL,
however, I contend that this only applies to accumulated load (due to the shorter
time) but not necessarily to average, peak, or experienced load.

Moorkens et al. (2015) correlated ratings of expected PE effort with temporal,
technical and cognitive effort, in terms of time, TER, and fixation counts and
durations, respectively. Interestingly, the correlations between eye tracking data
and predicted effort were either very weak or weak, suggesting that human
predictions of PE effort cannot be considered completely reliable.

Kruger et al. (2016; 2018) explore a combination of eye tracking (fixation counts
and durations), EEG, and self-reported psychometrics, to investigate the impact
of different movie subtitles on CL. Fixation count provided an indication of
extraneous load, while fixation duration hinted at the depth of processing.
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In contrast to these quality-, time-, and expectation-based measures, Vieira (2014)
uses a psychology-motivated definition of CL. Using an eye tracker, he linked
average fixation duration, fixation counts, and a self-report scale measuring CL,
which is frequently used in psychology (Paas and Van Merriënboer, 1994), to
segments expected to pose different levels of translation difficulty (based on
linguistic features) and their corresponding METEOR ratings.

In a follow-up work, Vieira (2016) argued that instead of comparing the number
of editing operations, the cognitive effort would be a “more decisive indicator of
the overall effort expended by post-editors”. Therefore, he analyzed how all of
the above measures, as well as pause metrics and editing time, relate to each other
in a multivariate analysis. He found correlations between all measures; however,
a principal component analysis showed that they cluster in different ways. He
stated the possibility that “different measures may be more sensitive to different
nuances of cognitive effort, which would imply that, while a single construct,
cognitive effort might have different facets”. Overall, CL can be considered
“an inherently subjective variable that depends on how individuals cope with
variation in the demands of a task”.

The disseration by Daems (2016) presents a comparative analysis between PE and
manual human translation for English to Dutch texts with both professional and
student translators. A combination of speed analysis, quality analysis, keystroke
logging, eye tracking (fixation duration), and surveys for perceived quality,
speed, and usefulness were used. Overall there were less fixations in PE than
human translation which is why Daems argues PE would be less demanding.
Again, given that the tasks differ strongly, I believe that a simple fixation count
is too simplistic to draw conclusions about overall effort. She also found more
attention on the target and less attention on the source for PE compared to manual
translation. Furthermore, fewer external resources were consulted in PE, which
could come from the already given proposal by the MT.

What leads to effort?

The question of which sentence features affect PE effort has been researched as
well. Tatsumi (2009) analyzed the relation between automatic evaluation scores
and PE speed and found that especially the source sentence length and structure
yield longer PE times.

Temnikova (2010) compared MT that was simplified using controlled language
rules with normal MT in terms of errors. She extended an existing MT error
classification by ranking the error types in terms of cognitive effort based on a
cognitive model of reading, working memory theory, and written error detection
studies. The MT results were then considered to induce a specific cognitive effort
depending on the error types contained; however, an analysis of which CL these
errors induce on editors based on CL measures was not performed.
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Daems (2016) further found that “the more technical effort indicators (number of
production units, pause ratio, and APR, HTER) are mostly impacted by gram-
matical errors (grammar, structure, word order), whereas the more cognitive
effort indicators (fixations and time) are influenced most by coherence and other
meaning shifts”.

Koponen (2012) studied the relationship between cognitive and technical post-
editing effort by comparing edit distances to human judgments of segments on
a 5-point scale specifying the amount of PE effort that would be necessary to
achieve a useful translation. Similar scales were also proposed by Specia et al.
(2010) and Callison-Burch et al. (2010), measuring quality/expected percentage
that needs editing and implicitly assuming this to be equal to CL. Koponen (2012)
further found that her study participants found sentences with reordering more
cognitively demanding, and changing a word form least cognitively demanding.
Furthermore, the analysis showed that the factor most affecting the perception is
the sentence length, with long segments being perceived as requiring much more
effort, even when the number of edits is small.

Most of these works however, again measure quality/expected percentage that
needs editing and implicitly assume this to be equal to CL. Koponen et al.
(2012) “suggest post-editing time as a way to assess some of the cognitive effort
involved in post-editing”. They used the classification of error types in terms
of CL proposed by Temnikova (2010), ranking error categories by the authors’
expectation of CL. A link was found between the types of errors within segments
and the time required for PE. In a recent survey, Koponen (2016) concludes that
determining the amount of PE effort is still not fully solved and that “accurate
measurement of the actual effort would be important as it has implications not
only for productivity, but also for the working conditions of the post-editors”.
Lacruz and Shreve (2014) correlate different error types, classified into mechanical
and transfer errors, to PWR, HTER, and to user ratings on a 5-point scale of MT
quality. Similarly, the work of Popovic et al. (2014) shows that “lexical and word
order edit operations require most cognitive effort, lexical errors require most
time, while removing additions has low impact on both quality and on time”;
however, they simply considered human quality level scores as cognitive effort.

Vandeghinste et al. (2019) also have an MT error taxonomy, where monolingual
errors are fluency errors, and errors requiring both languages are accuracy er-
rors. Both classes again have several subclasses. Very interesting and related
is that they use these MT errors to predict temporal PE effort, i.e., PE time.
For this, a study with two Master’s students found that PE-time “can be esti-
mated with high accuracy, provided that the types of errors in the MT output
are known” (Vandeghinste et al., 2019). Furthermore, the authors found that
accuracy-mistranslations and fluency-grammar errors are the two main error
categories impacting PE time. Not all but only relevant error categories were
required to predict PE time, which can also be seen as a sentence-level QE system.
This automatic error detection for predicting PE time is achieved using RNNs.
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To summarize, these works provide insight into which features of a MT output
lead to longer PE times or worse subjective quality ratings, but a direct link to
CL in the psychological sense was not shown, but only assumed to exist.

Challenges of the translation and PE domains

The translation and in particular the PE domain pose a few challenges compared
to normal CL studies.

First, the task difficulty is of a subjective nature, as it depends on the translator’s
experience with similar texts, vocabulary, etc.; hence, the translations are not
objectively hard or easy as in the often-used artificial tasks (e.g., N-back or
arithmetic tasks). Also, the frequently used performance measure in a dual-task
design is impractical for such a real-world task since the focus should remain on
the PE task without distraction. This makes performance-based measures less
feasible for this domain. Other performance measures, besides the problem of
compensatory effects (Hockey, 1997) discussed above, have the inherent problem
that defining performance is by itself not easy in this domain, due to the complex
inter-relation of speed and quality.

Second, the task of PE is very restricted: the translator does not move a lot, is
focused on the screen, does not speak, etc. Thus, behavioral measures are limited
to mouse and keyboard inputs, while speech and linguistic based measures
(Khawaja et al., 2014) are only possible in multi-modal CAT environments.

Last, any sensors should act in the background and should not hinder the process
or make the translator feel uncomfortable, which can be an issue with two-finger
GSR sensors, or any EEG sensors. Therefore, physiological measures should
focus on wearables and cameras.

The inter-translator differences, which make performance measures difficult,
could, however, be captured well by subjective measures. Such subjective mea-
sures, however, interrupt the PE process and cost time. An interesting research
direction with only few publications so far is therefore to use physiological and
behavioral measures proposed in HCI to estimate the subjective CL while PE.
For example, one could integrate gaze data, heart features, or skin resistance to
detect text parts that are hard to correct and automatically propose alternatives
to the post-editor. This is what we investigate in Part III, where we first analyze
which adaptations might be suitable for PE, and then present a multi-modal CL
estimation framework which we explore in several studies.

2.4.4 User Acceptance of Cognitive Load Measurement

We have seen that there is a large variety of approaches to estimate CL, and some
of them have been explored in the translation domain. Apart from investigating
how suitable sensors are for CL measurement, it is important to understand
whether users would accept being tracked by these measures, or if they have pri-
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vacy concerns. This section reviews literature on the user acceptance of different
CL measurement approaches and builds the basis for chapter 9.

Fensli et al. (2008) analyzed how well patients accept wearable sensors in the
medical context. While medical information and the healthcare context are
perceived as particularly sensitive, many health apps capturing similar data show
poor information privacy practices (Schomakers et al., 2018). Perez and Zeadally
(2018) split privacy issues and solutions for consumer wearables into three areas:
context privacy, bystander privacy, and external data-sharing privacy. Relevant
for our use case are context privacy and external data-sharing privacy, which
include users’ fears, data disclosure, etc. Privacy concerns when wearing a sensor
suit were seen as most critical in the context of conversation and commuting;
collecting stress information, temporal and spatial data, as well as sharing the
data with the general public, increases these concerns further (Raij et al., 2011).

Lehto and Lehto (2017) find that participants do not perceive the numerical infor-
mation collected by wearables as sensitive; however, health records including
written information are considered very private. Motti and Caine (2015) show
that users have different concerns based on the type of data collected, the sensor
used, and the purpose of the wearable: microphones and cameras pose the most
privacy concerns followed by GPS, while heart rate monitors or activity trackers
are seen as less problematic. According to Vitak et al. (2018) and Zimmer et al.
(2020), most fitness tracker users only express minimal privacy concerns and
show only an average level of concern if their data were compromised. A survey
on privacy concerns in wearable devices is provided in Datta et al. (2018) and
anonymization techniques to solve some of the privacy issues are discussed.
Users also tend to underestimate or ignore potential risks, e.g., the lack of a
keyboard makes users assume the collected data cannot be sensitive (Lowens
et al., 2017). In a study with college students (Udoh and Alkharashi, 2016), users
assumed that the producer of the wearable would take appropriate measures
against privacy issues and therefore felt safe.

The willingness to share personal data is also linked with the trust in the security
(Acquisti et al., 2013) and the storage location (Lidynia et al., 2017) of fitness
tracker data. A taxonomy developed on privacy risks for consumer health
wearables (Becker et al., 2017) reveals that these risks refer to the perceived data
sensitivity, data variety, and tracking activity. In general, however, users often
share private information even when they claim to be concerned about privacy
(Williams, 2018), which can be seen as an attitude-behavior gap.

A methodologically interesting work by Acquisti et al. (2013) asked participants
for the amount of money necessary to share otherwise private data, and the
amount of money participants would pay to make otherwise public data private.
While results are not relevant for CL estimation since they focus on the shopping
scenario, we will use this approach in chapter 9 to study which CL measurement
approaches is most useful in practical applications.
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2.4.5 Adaptations to Measured Cognitive Load

Since CL theory stems from educational psychology, many proposals of CL-
aware systems have also been made in the learning context: Kuo et al. (2007)
propose the idea of a context-aware learning system that considers factors like
facial expressions, human voice, or body temperature. Recommendations of
learning content based on ontologies about the learner and the content, as well
as behavioral, positional, temporal, and physiological data, have also been pro-
posed (Pernas et al., 2014; Yu et al., 2007). Furthermore, dynamic user interface
adaptations (Ghiani et al., 2015) and adaptive visualizations (Chen, 2016), driven
by physiological parameters, were suggested to support learning. The concept of
affective e-learning, which uses emotion feedback to improve the learning experi-
ence, was proposed in Shen et al. (2008). The work showed in a feasibility study
that biosensors can be utilized for this purpose. A review of affective computing
in education can be found in Wu et al. (2016a), which highlights the essential
role that positive emotion has on comprehension performance. Bahreini et al.
(2016) investigate emotion recognition using webcams and microphones to better
respond to the affective states of students, as human teachers would in tradi-
tional learning. Similarly, Ishimaru et al. (2017) link eye tracking data, including
fixations and pupil diameter as well as thermography, to surveys about cognitive
states of high school students when studying a digital physics book. Based on
this, they propose to provide individualized information to enhance learning
abilities. Leony et al. (2012) showed that such adaptations can affect cognitive
processes like memorization and decision making. Sensor data was also linked
to a subjective measure of flow (Léger et al., 2010), stress detection (Rodrigues
et al., 2013), and motivation (Bauer et al., 2018) for the case of e-learning.

A framework for learning analytics based on wearable devices “to capture
learner’s physical actions and accordingly infer learning context” was proposed
by Lu et al. (2017). As a first use-case they focus on traditional learning and
implement student engagement detection for the classroom based on arm move-
ment to intervene when engagement is low, or to provide incentives when it is
high. Moissa et al. (2019) review the literature on measuring students’ effort and
propose to use wearables to estimate cognitive load and predict the CL level for
future learning tasks. Students could also be alerted when they should take a
break or move to less challenging tasks as detected through wearables.

Apart from these works focusing mainly on conceptual design or correlations,
several works go a step further and investigate the feasibility of adaptations
to CL by training predictive models: For arithmetic calculations, Borys et al.
(2017) trained trinary classification models (low CL, high CL, without task) based
on brain and eye activity, reaching up to 73% accuracy with a KNN classifier.
Similarly, a Ridge regression model based on EEG data during arithmetic opera-
tions was able to determine the task complexity with comparatively low error
(Spüler et al., 2016). The resulting model was then used in a second study to
adaptively propose tasks to learn arithmetic additions in the octal number system
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(Walter et al., 2017), where the resulting learning success was comparable to a
learning system adapting to the amounts of errors made by the learner. Similarly,
Galán and Beal (2012) use SVMs to predict the success or the failure of students
solving math problems based on a combination of attention and workload sig-
nals from EEG sensors, achieving between 57 and 87% accuracy depending on
the exercise difficulty. Instead of EEG data, Mock et al. (2016) use touchscreen
interactions to classify CL for children solving math problems, with an average
binary classification accuracy of 90.67% using SVMs.

Similar to the above ideas on CL adaptations in the learning context, chapter 6
presents our discussions with professional translators how CAT tools could react
to estimated CL to improve the PE process. Chapter 7, section 8.1, and section 8.2
then explore how well CL can be measured by a multi-modal frame during
PE, and section 8.3 uses the same setting in an e-learning task, to explore the
generalization of our multi-modal CL estimation approach.

2.4.6 Summary

The remuneration for PE are often established through productivity tests consid-
ering the performance improvements compared to traditional translation from
scratch, however, this might not capture the full effort involved and could lead
to frustration (Cumbreno and Aranberri, 2019). This section therefore discussed
how the user’s cognitive state can be modeled and presented a variety of works,
both from other domains and from the translation domain, that used a variety of
sensing approaches to estimate CL. We have then discussed privacy concerns that
users might have towards such estimations, and finally talked about approaches
to use the CL measurements to create cognition-aware systems that adapt to the
user to avoid cognitive overload as well as boredom.

Compared to the literature on learning, no works on cognition-aware translation
environments have been published, which is why we discuss this idea with
professional translators in chapter 6. Furthermore, many of the CL estimation
techniques presented above have not yet been explored in the context of transla-
tion, thus, we present such a multi-modal CL estimation framework in chapter 7
and explore it in three studies (chapter 8). Finally, we also look at the user
acceptance of different sensors for CL estimation in chapter 9.

Combining the previously proposed CAT tool supporting multi-modal input,
with such multi-modal sensing approaches, would overall lead to a multi-modal
multi-sensor interface. “Multimodal interfaces also support improved cognition
and performance because they enable users to self-manage and minimize their
own cognitive load.” Here, “sensors and input modalities can be coupled within
an interface - including that either can be used intentionally in the ‘foreground’
or they can serve in the ‘background’ for transparent adaptation that minimizes
interface complexity and users’ cognitive load” (Oviatt et al., 2017).

85



2.5 Automatic Post-Editing

Even if a human translator can efficiently translate using all the above tools and
improved interfaces, she still does not want to correct repetitive mistakes of a
MT again and again, but pursue an intellcutally rewarding activity (O’Brien and
Moorkens, 2014).

The most intuitive adaptation to post-edits would be to include the correction
with corresponding source segment as a new training sample and retrain the
MT system on the fly. While in theory, the underlying machine learning algo-
rithms should learn from the corrections, this approach has two fundamental
disadvantages: (1) training times for modern NMT approaches are way too long
to make frequent retraining viable in real-world translation workflows; (2) given
the millions of sentence pairs that MT systems are trained on, it is very unlikely
that a few additional samples change the model weights enough to guarantee
that it is able to avoid the mistakes in future. Thus, research has focused on
approaches to learn from post-edits, e.g., through online model adaptation in
SMT by adding new rules to the translation model, adapting the lanugae model,
and parameters (Denkowski et al., 2014), or through active learning based on
source-side information (Dara et al., 2014).

Another approach to tackle this issue is Automatic Post-Editing (APE), which
incrementally adapts MT to post-edits and thereby aims to automatically correct
errors made by MT systems before performing actual human post-editing (Knight
and Chander, 1994). As depicted in Figure 2.27, APE can be viewed as a 2nd-
stage MT system, translating predictable error patterns in MT output to their
corresponding corrections. Knight and Chander (1994) see this as an alternative
to having improvements right inside the MT system, where they would become a
part of the black box. In theory, APE systems can also be independent of particular
MT systems, thus, making them “portable across MT systems” accomplishing
“their tasks without reference to the internal algorithms” (Knight and Chander,
1994). Upon availability of human-corrected post-edited data, APE can thus
adapt any black-box (1st-stage) MT engine without incremental training or full
re-training to improve the overall translation quality (Pal, 2018).

Figure 2.27: Automatic post-editing.
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Already back in 1994, Knight and Chander (1994) distinguished two types of
APE called adaptive and general: Adaptive approaches learn from human post-
editors (or their captured post-edits as a corpus) and “begin to emulate what
the human is doing”, however, noting that the types of errors are different for
any MT system or domain. In contrast, general APE approaches deal with certain
linguistic criteria that should be corrected on any MT output or domain, e.g.,
selecting the correct article. Reflecting on the current state-of-the-art in APE (see
below), we can see that modern approaches focus on adaptive APE, probably
because MT research itself is currently also highly data and less rule-driven.

The aim of such adaptive APE is to reduce the translators’ workload and increase
their productivity (Pal et al., 2016a; Parra Escartín and Arcedillo, 2015a,b). De-
pending on the training data, it can not only learn corrections, but also individual
stylistic preferences of the translator or domain, e.g., decisions to paraphrase
certain sentences. The large first-stage MT system is thus kept as is, while the
second-stage APE model is optimized to learn from post-edits. An interesting key
difference between APE and MT as pointed out by Bojar et al. (2015) is that MT
must translate each word, whereas APE can decide to keep words untouched.

2.5.1 WMT Shared Task on Automatic Post-Editing

Since 2015, the Workshop/Conference on Machine Translation (WMT) hosts a
shared task on APE (Bojar et al., 2015, 2016, 2017; Chatterjee et al., 2018, 2019,
2020; Akhbardeh et al., 2021). In a shared task, different teams compete on the
same provided datasets, which allows for structured analyses of the different
approaches and thereby pushes the state-of-the-art in APE. As the works pre-
sented in Part IV were also tested on WMT data, it is important to provide an
understanding of this shared task on APE.

In this task, participants are asked to automatically correct “errors produced by
an unknown machine translation system” (Bojar et al., 2015). For this, the task
organizers prepared triples of source data (src), machine translation output (mt),
and human post-edits thereof (pe). The latter (pe) are naturally only accessible for
training, whereas the final goal is to produce outputs similar to pe automatically
for provided src, mt tuples in the test set (or at inference time). The shared
task is thus framed as a black-box scenario, where the internal workings of
the MT system are unknown and the triples are all that is known. Thus, APE
approaches cannot interfere in the decoding process. Instead, knowledge from
the triples must be gained to automate repetitive parts of the PE process. The
task organizers further chose to use independent segments which are thus not
coherent. While this prevents APE systems from considering context, it allows
randomly splitting segments into train, development and test sets, which offers a
higher error repetitiveness between those sets.
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Evaluation

The evaluation of an APE system’s performance can be achieved by comparing
the hypothesis pewith the reference pe output, either through automatic measures
or manual human evaluation. In WMT 2015, TER was the only metric used, both
case-sensitive and case-insensitive. In 2016, both TER and BLEU were used
in case-sensitive mode, which was especially important for the chosen target
language (German). Furthermore, this second round added human evaluation
based on ranking up to 5 anonymous APE system outputs. The human evaluation
matched well the automatic scores, showing their reliability for the APE task.
In 2017, apart from again using TER and BLEU, the manual evaluation was
changed towards using direct assessment (Graham et al., 2017) (both with crowd-
workers on Amazon Mechanical Turk and translation students). To compare APE
outputs to unmodified mt and human-corrected pe, these were also included
in the evaluation and rated by the evaluators. To reduce annotation effort, a
preprocessing step checked if multiple systems produced the same output, which
happens quite frequently given that APE models can choose to do nothing or only
few modifications. Interestingly, the quality control of the ratings showed that
students are more reliable annotators, which all passed the test in contrast to only
54% of the crowd-workers. In 2018, the same 3 metrics were used (TER, BLEU,
direct assessment), however, the manual evaluation was this time conducted
by professional translators and proficient translation students. Furthermore,
WMT 2018 additionally explored TER and BLEU not only by comparing the
hypothesis to pe, but also by comparing it to external references, or against both
pe and external references. This helps exploring whether APE systems perform
edits different than pe that might still be valid, i.e., whether mt is transformed
more towards pe or some other reference. In 2019 and 2020, the analysis was
done mostly in line with the 2018 approach. In 2021, the approach was again
comparable, however, no comparison to external references was conducted.

Baselines

These evaluation approaches are suitable to compare different APE models; how-
ever, baselines further help understanding whether the proposed models really
extend the state-of-the art. The standard baseline for automatic evaluations is
to simply compare the provided mt with the reference pe, thus, calculating the
quality of the first-stage MT system. This can also be seen as an APE system
that leaves the mt unmodified and merely copies it as a hypothesis pe. Cal-
culating TER/BLEU between this raw MT baseline and pe is thus identical to
HTER/HBLEU, as it measures the similarity between mt output and its corre-
sponding post-edits (pe). In WMT 2015, 2016, and 2017 also another baseline was
used, namely a re-implementation of the statistical APE method proposed by
Simard et al. (2007a). In WMT 2018, this statistical APE baseline was dropped, as
it was not competitive with the new neural APE approaches.
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Language Pairs

As language pairs, the tasks dealt with English-Spanish in 2015, followed by
English-German in 2016, 2017, 2018, 2019, 2020, and 2021. Additionally, WMT
2016 explored German-English, WMT 2019 added English-Russian, and WMT
2020 and 2021 used English-Chinese as additional sub-tasks.

Data Considerations

Every year, the task organizers explore why their dataset was well or badly chosen
to be successfull in APE, which in turn shows where APE already performs well
and where its limits are. WMT 2015 used data from the news domain, however,
based on the results, the task organizers found that the variability in such general
domains makes learning tough because there are fewer patterns that can be
learned from the training data and transferred on the test data. Back then, they
also believed that data repetitiveness is an important factor, which intuitively
makes sense but turned out to be less important in later rounds of the shared
task. Crowd-based post-edits were less consistent in terms of editing patterns
and amount of editing compared to post-edits from professional translators.
Therefore, all following shared tasks used post-edits from professional translators
as data sources.

Apart from using professional post-edits, WMT 2016 switched to data from the
information technology (IT) domain, which is more restricted and thus features
more repetitiveness and a smaller vocabulary. In 2017, for English-German again
data from the IT domain was used while for German-English the Pharmaceutical
domain was chosen. The German-English task turned out much more challenging
due to higher quality MT, having 45% compared to 14% of perfect (TER=0)
translations in the test set. This calls for much more conservative approaches that
carry less risk of deteriorating the mt. Indeed, the proposed APE approaches
worked poorly on this dataset, even though the German-English dataset was
more than twice as large (25k vs 11k). However, the English-German data was
more repetitive than the German-English data.

Since MT research switched from PBSMT approaches to NMT approaches, WMT
2018 offered two sub-tasks, one for PBSMT (reusing data from 2016 and 2017)
and one for NMT (using new data). Due to higher MT quality, the NMT task can
be considered much more challenging, with 25.2% vs. 15% of test sentences that
can be considered perfect (TER=0).

In 2019 only NMT data was used, as PBSMT was already too outdated to draw
useful conclusions. Apart from the English-German NMT set, an additional
English-Russian NMT set was released, that proved to be of higher quality,
making this sub-task more challenging. An interesting finding of the data analysis
was that the repetition rate, originally thought to be very important for APE, is
only of marginal relevance compared to the MT quality, as the English-Russian
data had high repetitions and highest quality, with no submission beating the
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simplemt baseline. A reason could be that much less can be learned when the MT
output is already near-perfect. While for English-German 25.2% of segments were
already perfect (TER=0), for English-Russian 61.4% made the task considerably
more difficult as many automatic edits would worsen the results.

Instead of running APE on domain-adapted MT output as before, WMT 2020
explored how well APE works to fix errors in a non domain-adapted neural MT
using Wikipedia text. This is particularly interesting, as one of the main moti-
vations for APE is its ability to adapt a first-stage MT system towards gathered
data. The comparably lower MT quality gives APE more room for improvements
and shows more errors to learn from in the data, even though the repetition
rate was the lowest investigated so far. Furthermore, the lower quality MT lead
to much less sentences in the data that are near-perfect, therefore APE has less
risk of damaging good MT output. The task organizers hypothesized that ideal
conditions for APE would have a peak in error distribution in the post-editable
section, thus, not perfect but neither too bad for post-editing, for instance bigger
than 0 but smaller than 40 in TER, a threshold that humans consider post-editable
and would not translate from scratch (Turchi et al., 2014). WMT 2021 also focused
on a non domain-adapted MT system, yielding a similar repetition rate as in
2020, high-quality outputs (18.05 TER as a baseline), and a TER distribution that
is strongly skewed, with over 50% of sentences having a TER value below 10.
The authors therefore consider it the hardest APE task so far.

Artificial Datasets and Data Size

Since the first round of the shared task, the usage of any additional training data
was allowed, and Junczys-Dowmunt and Grundkiewicz (2016) indeed proposed
an artificial dataset containing 4.5 million sentence pairs generated through
backtranslation. This dataset was then officially advertised as an additional
training resource since 2017.

Furthermore, the switch to neural APE requires more data, which lead to the
introduction of another artificial dataset called eSCAPE (Negri et al., 2018b).
It contains 14.5 million samples, 7.25 of which coming from NMT and PBSMT
respectively, created by using the reference of MT training data as fake-pe and
exploiting another NMT system to generate the mt.

By contrast, the amount of real data is rather small, especially compared to the
data amount required for training full MT models: the sentence pairs for training
ranged from 11k in 2015, 12k in 2016, 11k/25k in 2017 (for different domains),
13k in 2018, 15k in 2019, and 7k for 2020 and 2021 (Bojar et al., 2015, 2016, 2017;
Chatterjee et al., 2018, 2019, 2020; Akhbardeh et al., 2021). Thus, given only a
small amount of (real) data for the task, APE needs to be able to outperform the
1st-stage MT system.
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2.5.2 Approaches to Automatic Post-Editing

SMT vs. NMT

The field of APE covers a wide methodological range, but similar to MT, the ap-
proaches changed from SMT-based approaches (Chatterjee et al., 2017b; Lagarda
et al., 2009; Pal et al., 2016d; Rosa et al., 2012; Simard et al., 2007a,b) towards
neural APE, which was first proposed by Pal et al. (2016b) and Junczys-Dowmunt
and Grundkiewicz (2016). We will therefore focus on neual APE in the remainder.

Single- vs. Multi-Source Approaches

Originally, neural APE was proposed for the single-source scenario which does
not consider src, i.e., mt→ pe. Such a single-source APE system can be viewed
as a mono-lingual editor correcting the MT output. Apart from single-source
(mt → pe) APE approaches, the topic can also be addressed as a multi-source
({src,mt} → pe) task, which also considers the source and thus resembles the
normal PE process. Since multi-source approaches can take advantage of the
dependencies of translation errors in mt originating from src, thereby providing
the context that mt was created in, these approaches have already been proposed
for the statistical case (Béchara et al., 2011; Chatterjee et al., 2015) and later
neural APE (Chatterjee et al., 2017a; Junczys-Dowmunt and Grundkiewicz, 2016;
Libovický et al., 2016; Varis and Bojar, 2017), making it the de-facto standard in
modern APE. A multi-source neural APE system can for example be configured
by using a single encoder that encodes the concatenation of src and mt (Niehues
et al., 2016) or by using two separate encoders for src and mt and passing the
concatenation of both encoders’ final states to the decoder (Libovický et al., 2016).
Figure 2.28 compares single-source APE to two multi-source APE approaches,
one with a single and one with two encoders. Nowadays, most works focus on
the multi-source multi-encoder scenario, and the question how to best encode src
and mt is actively researched. We also present two such architectures in Part IV.

Evolution of APE Approaches

This section provides a historic look at how the approaches changed by focusing
on submissions to the shared task on APE at WMT:

WMT 2015 In WMT 2015 (Bojar et al., 2015), the methods were mostly statistical
based on the approach by Simard et al. (2007a). However, the novelties included
using pipelines of different modules (e.g., predicting if the mt or APE output is
better instead of always applying APE). A rule-based approach was also explored,
having e.g., rules for predicting the word case or verbal endings. However, none
of the submitted runs was able to beat the baseline MT system, meaning that
no approach was able to reliably learn automatic correction patterns. While all
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Figure 2.28: Single- vs. multi-source and encoder automatic post-editing.

approaches were worse than the baseline, the more conservative ones performed
better than the more aggressively editing systems that risk performing wrong,
redundant, or merely different edits than the single pe version.

WMT 2016 In WMT 2016 (Bojar et al., 2016), for the first time a neural approach
participated: The winning system by Junczys-Dowmunt and Grundkiewicz
(2016), that also proposed the artificially created large APE corpora, builds upon
the work by Bahdanau et al. (2014) that leverages attention mechanisms and is
trained using BPE (Sennrich et al., 2016) to avoid out-of-vocabulary words. They
combine two single-source models, one from mt to pe and another from src to pe,
by ensembling. Finally, string matching comparing the mt and the hypothesis
pe is used to penalize words that are not part of mt to avoid over-correction.
Another neural approach using attention (Bahdanau et al., 2014) was presented
by Libovický et al. (2016), which leverages two separate bi-directional RNN
encoders for src and mt working on one-hot vectors, where the RNN decoder
uses a weighted combination of both encoder states as input. Interestingly, they
work on transformed target sentences to focus on the post-edits: Instead of
the actual pe string, they calculate the difference to mt and reformulate pe as
a sequence of “keep”, “delete”, and inserts, where inserts use the word to be
inserted. Apart from these neural approaches, automatic rule learning approaches
and a variety of extensions to statistical approaches were explored. Different
from 2015, in 2016 half of the approaches managed to beat the baseline. This can
probably be attributed to the higher repetitiveness in the IT data compared to the
more general news data, which lead to the approaches of 2016 also editing many
more sentences than those of 2015. The organizers conclude that the top-ranked
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neural system (Junczys-Dowmunt and Grundkiewicz, 2016) was able to learn
better corrections from the data, however, as they created a large artificial dataset
that was unavailable to others, the results might also stem from this additional
data. Especially evident was this winning approach’s ability to learn applying
shift operations.

WMT 2017 In WMT 2017 (Bojar et al., 2017), all submissions were based on
neural networks, and mostly sticked to multi-source models leveraging both src
and mt to predict pe. Furthermore, the artificial dataset from 2016 was widely
adopted to feed the data hungry neural approaches. Improvements over the
baseline were much higher for English-German than for German-English, where
the mt was already much better and therefore harder to improve. The focus was
on comparing single-source to multi-source approaches; comparing different
attention mechanisms (soft attention vs. hard monotonic attention); exploring
character-to-character vs. BPE-based neural networks; having a single encoder
working on the combination of src and mt vs. a multi-encoder setup passing a
weighted combination of both encoders to the decoder; incorporating features
from word-level QE; ensembling and re-ranking based on the distance to the mt;
or again focusing on predicting keep, delete, insert instead of the actual pe in the
hope of achieving a better focus on the corrections and therefore making it easier
to learn the identity function. In general, WMT 2017 clearly showed technological
advances compared to 2016, where all systems significantly outperformed the
do-nothing baseline, often by a large margin. Naturally, however, the gap to
human pe was still large, showing that APE does not automate PE, but only
reduces the gap between mt and pe and thereby human effort.

WMT 2018 While previous rounds have shown that especially neural APE
approaches can be used to improve over PBSMT output, WMT 2018 additionally
explored if neural approaches can also be used to improve NMT output. Fur-
thermore, all submitted methods now built upon the Transformer architecture
(Vaswani et al., 2017), which had previously achieved the new state-of-the-art in
NMT (see subsection 2.1.4). The attention mechanisms in the Transformer allow
to capture global dependencies between input and output, thus, between src,
mt, and pe. The APE shared task on NMT proved to be much more challenging,
which can be explained by its much higher mt quality, but also by less available
training data (28k vs. 14k). While all participating teams experimented with
the Transformer architecture, the details differed, ranging from learning a single
model for the PBSMT and NMT task and informing the model about the data
source through a separate token, to different approaches how to combine src
and mt in a multi-encoder setup. As we also participated in WMT 2018 (see
chapter 10), we present these approaches in more detail:

Our own submission to WMT 2018 (Pal et al., 2018) uses three self-attention-
based encoders, two separate self-attention-based encoders to encode mt and
src, followed by a self-attended joint encoder that attends over a combination
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of the two encoded sequences from mt and src and is used by the decoder for
generating the post-edited sentence pe. This work will be explained in more
detail in chapter 10.

Tebbifakhr et al. (2018), the NMT-subtask winner of WMT 2018 (wmt18nmt
best ), em-

ployed sequence-level loss functions in order to avoid exposure bias24 during
training and to be consistent with the automatic evaluation metrics. Shin and
Lee (2018) propose that each encoder has its own self-attention and feed-forward
layer to process each input separately. On the decoder side, they add two addi-
tional multi-head attention layers, one for src → mt and another for src → pe.
Thereafter, multi-head attention between the output of those attention layers
helps the decoder to capture common words in mt which should remain in pe.

The WMT 2018 winning system for the PBSMT task by Junczys-Dowmunt and
Grundkiewicz (2018) (wmt18smt

best) also presented a Transformer-based multi-
source APE architecture called dual-source Transformer. They use two encoders
and stack an additional cross-attention component for src→ pe above the pre-
vious cross-attention for mt → pe. Comparing Shin and Lee (2018)’s approach
with the winner system, there are only two differences in the architecture: (i)
the cross-attention order of src → mt and src → pe in the decoder, and (ii) the
winner system additionally shares parameters between two encoders. In a WMT
research paper, Libovický et al. (2018) investigated four different input combina-
tion strategies for multi-encoder based Transformer architectures by varying the
encoder-decoder attention: serial (computing encoder-decoder attention one by
one), parallel (attends to each encoder separately and sums up context vectors),
flat (concatenating both encoder states and attending to this flattened vector), and
hierarchical (first attend to each encoder separately, then attend over the result-
ing contexts). They evaluated their methods on translation tasks with multiple
source languages and showed that the models are able to use multiple sources
and improve over single source baselines.

All approaches presented at WMT 2018 managed to drastically outperform the
mt baseline for the PBSMT task, however, automatic improvements on top of the
NMT system were only minor or even worse than the NMT baseline. Further
analysis on the PBSMT data clearly showed that the APE models indeed learn
the patterns between mt and pe and thus push mt in the direction of pe and
not in the direction of other external references. However, the comparison to
external references showed that acceptable over-corrections (that are correct but
not necessary as they are not in pe) indeed do happen (at least in the PBSMT case).
Furthermore, the higher NMT quality lead to APE systems being less aggressive
than those for the PBSMT task. However, to achieve higher quality on the NMT
task, APE models would need to become more aggressive. Further interesting
insights were the types of edits done by the APE systems, where reordering was
much more important for PBSMT than for NMT, which can be explained by the

24The exposure bias problem in sequence-to-sequence models is a result of using the ground truth
sequence during training, which has a different data distribution than the previously generated
tokens used for predicting the next token during inference.
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higher fluency of NMT output. Instead, lexical choice becomes more important
for NMT (reflected in the amount of substitutions done by APE). While direct
assessment showed clusters of statistically different performing APE methods
for the PBSMT sub-task, all NMT submissions were on the same level with the
“do-nothing” baseline.

WMT 2019 The English-German data in 2019 (Chatterjee et al., 2019) was iden-
tical to that of 2018, allowing a fair comparison that showed improvements.
For the more challenging English-Russian task, with a higher quality NMT as
a basis, no system was able to improve the scores compared to the mt baseline.
As approaches, again all teams used neural models, in most cases based on the
Transformer architecture and using a multi-source approach (Lee et al., 2019; Pal
et al., 2019; Xu et al., 2019). The approaches mostly differ in the way the Trans-
former was reused for APE, i.e., the way src and mt are encoded. Our own WMT
2019 submission (Pal et al., 2019) will be explained in more detail and with an
extended analysis in chapter 11. Still, we want to review other well-performing
approaches from WMT 2019.

The winner system by Lopes et al. (2019) (wmt19nmt
best ) uses a single pre-trained

BERT (Devlin et al., 2019) encoder that receives both the source src andmt strings
and applies a BERT-based encoder-decoder model. Additionally, they add a
conservativeness penalty factor during beam decoding to avoid over-corrections.

In general, the results on English-German show the technological progress since
2018, however, the failed improvements over the English-Russian baseline show
that APE does not always help, and, similar to MT, that APE has problems with
morphologically rich languages like Russian, which leads to more sparse data that
(in combination with the higher MT quality) made the task too challenging for
the explored approaches. As in 2018, results (now the NMT results) showed that
APE systems indeed correct towards pe and not towards independent reference
translations, thus, showing APE’s adaptation towards the style in the training
material. The analysis of over-corrections by calculating TER/BLEU not only
against pe but also against external references showed that the 2019 approaches do
not have a tendency towards such over-corrections. Inspecting the submissions,
they are all rather conservative and edit much less than required. Thus, the
performance difference comes from precision on the edits and not from different
levels of aggressiveness.

WMT 2020 In 2020, considerable improvements were achieved by APE on
the non-domain adapted NMT output, showing the effectiveness of APE to
improve MT quality towards a certain domain, even though this domain is not
as repetitive as the IT domain. This shows APE’s potential as a second-stage
MT system performing domain or style adaption of a non-adapted MT system.
Again most approaches were built upon the Transformer architecture in a multi-
source fashion, either by concatenation src and mt or exploring multi-encoder
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approaches. Also the integration of the BERT language model, QE techniques,
or ensembling of several approaches was analyzed. As in previous rounds of
the task, creating synthetic corpora as additional training material was explored.
Interestingly, the top-ranked system was ranked on the same level as human PE
data, which might however have been influenced by the data and evaluation
setting, thus, the task organizers by no means claim human parity even if the
outcome suggests this. Nevertheless, it can be interpreted as further progress
in APE. Note that the new (non-domain adapted) data source makes it hard to
compare to previous rounds, and thus, does not show whether a well-optimized
MT engine could also benefit from these APE approaches. One of the teams
performed better than all others by a large margin. A notable aspect about
their work was that they trained their Transformer-based model not only on
concatenated src and mt but additionally added an auxiliary MT received from
Google Translate, thus, yielding three inputs. This system modified more than
90% of the sentences while still achieving a precision of 0.69. In terms of applied
changes, the 2020 approaches were not only more aggressive, but the lower
quality data they operated on lead to many more structural changes (deletions,
insertions, shifts) and much less lexical changes (substitutions) compared to
previous rounds.

WMT 2021 Even though there was a similar number of data downloads in
2021 compared to the previous years (Akhbardeh et al., 2021), only 2 teams
participated for the English-German, and no one for English-Chinese sub-task.
The task organizers believe the reason for the lack of participants to be the
especially challenging task. The systems by Amazon Prime Video relied on the
fairseq NMT model, trained first on MT data from the news domain, then fine-
tuned on APE data by concatenating src and mt as new src of the MT system,
and using pe as “target” of the MT model. The other system proposed by the
Netmarble AI Center instead focuses on multitask learning with a Transformer
architecture, relying on data from tasks like speech recognition, named entity
recognition, masked language modelling, and keep/translate classification to
deal with data sparsity. In terms of automatic scores, all systems are roughly on
par, with only one run submitted by Netmarble statistically outperforming the
baseline. However, both teams significantly beat the baseline in terms of human
evaluation, and Netmarble also significantly outperformed Amazon according
to the human judgment. The finding that all systems were rated higher than
the baseline in terms of human evaluation shows that APE is still a promising
technology, however, it became harder to measure the improvements.

2.5.3 Summary

One negative aspect about PE frequently mentioned by translators is the need
to correct repetitive mistakes (O’Brien and Moorkens, 2014) and the inability
of the MT to properly learn from human corrections, which forms the basis of
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our third research question. This section presented APE as one approach to
tackle this issue by adapting MT output based on a limited set of corrections.
We have seen how the problem of APE has been addressed over the years by
especially focusing on the WMT shared task, which nicely shows the transition
from phrase-based to neural approaches, but also the evolution of evaluation
schemes and data considerations. In our review, we particularly focused on the
WMT 2018 and 2019 shared tasks, as we also explored two architectures working
on this data, called the Multi-Source Transformer and Transference architectures,
that we discuss in detail in chapters 10 and 11. One key take-away is that with
the limited amount of real data available in the shared tasks, APE might not be
able to improve highly domain optimized state-of-the-art NMT, but it is well
suited to improve generic non domain-adapted models. As we will discuss in
chapter 12, more data also allows to improve over specialized MT systems, and
online APE can help avoid repetitive mistakes during PE.

2.6 Conclusion

We started our literature review with a brief history of MT, where we especially
discussed that even though the quality is continuing to improve, there are few
cases where the MT could be published without human intervention.

Thus, we presented the main paradigm of human-AI collaboration investigated in
this dissertation: Post-Editing. Apart from discussing what PE is, we in particular
focused on effort and time savings achieved through PE, quality improvements
in terms of correctness, but also the loss in linguistic variety as well as translators’
attitudes towards PE, which are by no means always positive.

We then looked at CAT tools, the translation environments used to perform trans-
lation and also PE. These are feature-rich, and a vast amount of CAT alternatives
have been developed in academia and industry. Nevertheless, studies on user
interface needs for CAT tools show that there is still room for improvement,
especially because CAT tools were often designed with traditional translation in
mind and only added MT as an additional feature, even though PE requires less
text input but more text manipulation. A particularly related area of research is
that of multi-modal CAT which we reviewed in depth. Part II, focusing on RQ1,
contributes to this field by conducting a structured analysis of interaction modali-
ties that might be suitable for PE. The results of this analysis are then transformed
into a multi-modal CAT environment called Multi-Modal Post-Editing (MMPE),
which is one of the main contributions of this dissertation.
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Next, we looked at the cognitive dimension of PE, where we focused on cogni-
tive load theory and approaches to measure CL. While a variety of measuring
approaches have been proposed in research areas other than translation, many of
them remain unexplored for PE. There are however, a variety of studies show-
ing which sentence features are particularly hard to translate. Furthermore, we
discussed the literature on privacy concerns regarding CL measures, as the mere
possibility to estimate CL with a given sensor does not imply that users would
accept their data being used for this purpose. Finally, we presented systems that
directly react to measured CL to adapt the interface or task automatically. Part III
builds upon these works to investigate RQ2, where we first interview transla-
tors to understand which CL adaptations might be useful for PE, then present a
multi-modal CL estimation framework which we explore in three studies, and
finally conduct a survey on the willingness to share data for this purpose.

Finally, we discussed Automatic Post-Editing as a tool to tackle the problem of
correcting repetitive mistakes of the MT in PE. We introduced the WMT shared
task on APE, which defines the problem and tracks progress in APE, and we
discussed which approaches have been proposed over time. Our own APE
models addressing RQ3 are presented in Part IV: first, we describe the Multi-
Source Transformer, then the Transference architecture, and finally discuss how
these could be integrated into CAT tools to reduce human PE effort by allowing
domain-adaptation and translator-personalization.
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Part II

Exploring Multi-Modal
Interactions for Post-Editing of

Machine Translation
As discussed in the literature review, PE of MT saves time and re-
duces errors compared to traditional translation from scratch (Green
et al., 2013). Therefore, professional translators are gradually moving
towards PE (Zaretskaya et al., 2015; Zaretskaya and Seghiri, 2018).
The post-editing process differs significantly from traditional trans-
lation, which changes the interaction patterns to significantly less
keyboard input but more navigational interactions (Carl et al., 2011;
Green et al., 2013). The obvious question therefore is, whether mouse
and keyboard are still the best interaction modalities for PE, or if other
interaction modalities like handwriting or speech input might better
support the correction of MT errors. Ideally, improved interaction
possibilities could also enhance translators’ perceptions of PE.

Thus, this part presents research towards a CAT environment that
supports explicit input from a variety of interaction modalities. Chap-
ter 3 presents an elicitation study (Vatavu and Wobbrock, 2015) with
professional translators to integrate the target users early on in the
design process. Based on these findings, chapter 4 presents MMPE,
a multi-modal CAT interface allowing users to directly cross out or
hand-write new text, drag and drop words for reordering, or use
spoken commands to update the text in place. Apart from explaining
the system capabilities, the chapter also discusses MMPE’s advan-
tages and disadvantages as captured in a controlled experiment with
professional translators. Finally, chapter 5 summarizes and reflects
upon improvements to MMPE based on these findings, and presents
two additional studies conducted with the prototype: one focusing
on mid-air hand gestures and the other on word-level QE for PE.

Part II is based on publications Herbig et al. (2019a), Herbig et al.
(2020b), Herbig et al. (2020c), Herbig et al. (2020d), Jamara (2021),
Jamara et al. (2021), Shenoy (2021), and Shenoy et al. (2021).
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Chapter 3
Eliciting Multi-Modal Interactions for

Post-Editing Machine Translation from
Professional Translators

To involve target users early on and base the subsequent prototype develop-
ment upon their visions, this chapter presents an elicitation study conducted
with professional translators. For this study, we (a) propose a set of common
PE operations (or referents) to figure out (b) which modalities translators find
appropriate for which PE task, (c) what perceptions they have regarding modal-
ities commonly used in HCI, and (d) how they envision an ideal translation
environment setup for PE. We find that especially a digital pen, touch, speech,
and a combination of pen and speech could support the different PE tasks well
in a touch-friendly screen setup.

This chapter is based on publication Herbig et al. (2019a).

3.1 Evaluation Method

As an evaluation method, we chose an elicitation study (Vatavu and Wobbrock,
2015) paired with semi-structured interviews. We will first present the concept
and literature on elicitation studies to properly introduce the key aspects. Then
we will provide an overview of the different parts of our study, talk about the so-
called referents (common operations), and modalities to achieve those referents
with. The study has been approved by the university’s ethical review board.
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3.1.1 Elicitation Studies

Elicitation studies are a specific form of participatory design (Schuler and Namioka,
1993) and a common tool to design natural user interfaces. Such studies are often
used in early stages of research for figuring out which interactions are most
suitable for which tasks. Later stages then try to put the findings into a proto-
type that is again evaluated with users, to see how good the elicited interactions
work in practice. Important aspects of such elicitation studies include leading
participants away from technical thinking (Nielsen et al., 2003), making them
assume that no recognition issues occur, and considering their behavior as always
acceptable (Wobbrock et al., 2009). Furthermore, they should only be informed
about the essential details of the task so as not to bias them towards existing
approaches (Wobbrock et al., 2005). Instead, participants should be presented
with so-called referents (i.e., common operations) and asked to propose actions
to achieve these referents (Good et al., 1984). This approach has been shown to
result in an increased immediate usage compared to highly iterated design ap-
proaches (Wobbrock et al., 2005). We use the formalization for elicitation studies
by Vatavu and Wobbrock (2015), who define the agreement rate as the number of
pairs of participants in agreement with each other, divided by the number of all
possible pairs (Findlater et al., 2012). The introduced coagreement rate defines
how much agreement two referents share, and a significance test for agreement
rates is provided.

While most elicitation studies only explore the best interactions within a modal-
ity (e.g., for gesture input), Morris (2012) performed a multi-modal (speech +
gesture) elicitation study. Here, users were allowed to suggest more than one
interaction per referent which Vatavu and Wobbrock (2015)’s formulas do not
support. For the analysis, Morris (2012) instead proposed the max-consensus
(i.e., the percentage of participants proposing the most popular proposal) and
the consensus-distinct ratio (i.e., the percent of distinct interactions for a given
referent that achieved a predefined consensus threshold, here 2). Later, Morris
et al. (2014) showed that elicitation studies are often biased by the user’s experi-
ence with technology (called legacy bias), and discussed approaches against this
bias: production (producing more proposals), priming (making them think about a
specific technology before proposing), and partners (participating in a group).

In this chapter, an elicitation study with professional translators is used to deter-
mine which interaction modalities might be most suitable for which PE operation.

3.1.2 Study Overview

Initial Questionnaire

After providing informed consent to use the gathered data, participants are asked
to fill in a general questionnaire capturing demographics as well as advantages
and pain points of CAT tools. Similar to Wobbrock et al. (2009), we gather concep-
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tual complexity ratings on a 5-point scale for all our referents to understand how
difficult translators believe the distinct referents are without having proposed
concrete actions yet, thus, capturing intuitive complexity.

Unbiased Elicitation

After this, we conduct a classical elicitation study similar to Vatavu and Wob-
brock (2015). First, the general idea of a multi-modal CAT tool is introduced
without biasing the participants. For this, we explain that “other interactions
than the usual mouse and keyboard-based interactions” should be proposed,
and that everything they come up with “could be perfectly recognized”. Then,
common operations (a.k.a. referents, see below) are presented and the partic-
ipants are asked how they would perform this task. After each referent, they
rate the goodness and perceived ease of use for the invented interaction (analog to
Wobbrock et al. (2009) on a 7-point scale), and state on the same scale whether
“the interaction I picked is a good alternative to the current mouse and keyboard
approach”. We intentionally specified that the interface could look whichever
way the translators imagined it for the elicitation task, such as having multiple
screens of arbitrary sizes and orientation, etc.

Biased Elicitation

After having talked about each referent without any prior bias (in the unbiased
elicitation), we present all common interaction modalities (see below) and ask
them again which modality (or combination thereof) they would use for which
referent, but also to rate the different modalities on the same three scales as
before and to discuss their decisions. Analogously to Morris (2012), we allow
multiple proposals here, to support creativity. This second elicitation aims to
avoid legacy bias, where the introduction to modalities can be seen as the priming
strategy, while proposing multiple ideas is called production in Morris et al.
(2014). Furthermore, this more guided process aims to counteract our participants’
limited knowledge on interaction design.

Multi-Modal CAT Setup

Afterwards, we conduct a semi-structured interview to understand what the
participants would imagine an ideal multi-modal CAT environment to look like,
what kind of display devices would be located where, and how the interface
parts would be arranged. We decided to put this setup discussion after the
actual elicitation study, so that they can consider their proposed modalities and
interactions when designing the interface.
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General Notes on Methodology

The whole session is videotaped and participants receive a reimbursement for
their time. The unbiased part of the experiment is necessary so that participants
can think more broadly, which might lead to suggestions that are not within our
list of modalities in the biased elicitation. The biased part ensures that subjects
consider all suggested modalities, and provides more common ground for the
participants. In both parts, we counter-balance the order of the referents using a
balanced Latin square to avoid ordering effects.

3.1.3 Referents

The referents used in elicitation studies are an essential part, since the results
are limited to this set. To find good referents, we look at different PE task
classifications in the literature. Popovic et al. (2014) propose 5 PE operations:
correcting word form, correcting word order, adding omission, deleting addition,
and correcting lexical choice. Koponen (2012) additionally distinguishes between
moving single words or groups and the distance of the movement. Temnikova
(2010) further categorizes the addition or replacement of punctuation and the
correction of mistranslated idiomatic expressions, and distinguishes between
replacing a word with a different lexical item vs. with a different style synonym.
Based on these works, which focused on investigating cognitive processes, we
propose the classification depicted in Table 3.1 that we argue better captures the
necessary operations from an interaction perspective.

Abbreviation Name Description

A Addition
Missing word/punctuation
that needs to be added/inserted

ROs
Reorder
single

Word order error that requires
moving a single item

ROg
Reorder
group

Word order error that requires
moving multiple grouped items

RPs
Replace
single

Incorrect word/punctuation that
requires replacing with a different item

RPp
Replace
part

Word form error that requires
replacing with a different ending

Ds
Delete
single

Extra word/punctuation that requires
deleting a single item

Dg
Delete
group

Extra words/punctuations that requires
deleting multiple grouped items

Table 3.1: Referents used for the elicitation study.

For each referent, we prepared a simple example that was presented to the
participants orally, to provide a better understanding of the error concerned.
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3.1.4 Modalities

The modalities introduced at the beginning of the biased elicitation are depicted
in Table 3.2.

Abbreviation Name Description

MK
Mouse and
Keyboard

Mouse and keyboard to be
combined with other modalities

T Touch
Finger-based touch screen input,
including touch gestures

P Pen Digital pen/stylus used for touch input
G Gestures Mid-air hand gestures
S Speech Speech commands/dictation
E Eye Tracking Gaze positions, blinking, etc.

XY Combinations
Combinations of X and Y,
e.g., TS for Touch and Speech

Table 3.2: Modalities used for the biased elicitation study.

We explain each of these modalities to the subjects based on examples drawn
from daily life (e.g., touch would be well-known from smartphones, or gestures
from science fiction movies) and explain how they can be used (e.g., a pen to
draw or for handwriting).

3.2 Evaluation Results and Discussion

In this section, we present the findings of each individual part of the study.

3.2.1 Participants and Conceptual Complexity

Overall 13 (female=9, male=4) professional translators participated in the exper-
iment, 5 freelance and 8 in-house translators. Their ages ranged from 28 to 62
(mean=40.23, σ=9.11), with 2 to 34 years of professional experience (mean=13.65,
σ=9.66) and a total of 39 language pairs (mean=3). For most participants the
self-rated CAT knowledge was good (5 times) or very good (5 times). However,
participants were less confident about their PE skills (6 neutral, 2 good, 5 very
good), thereby matching well with the CAT usage surveys. Years of experience
with CAT tools ranged from half a year to 18 years (mean=9.12, σ=5.23), where
participants had used between 1 and 9 distinct CAT tools (mean=4.39, σ=2.18),
most frequently using Trados Studio (13), Across (9), Transit (9), MemoQ (7), and
XTM (7). Overall, participants are quite satisfied with their current CAT tools
(mean=4.92, σ=1.04, on a 7-point scale). As most liked features, translators most
often reported TM (9), terminology management (8), and concordance (7).
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The ratings for the conceptual complexity of the referents on a 5-point scale (Wob-
brock et al., 2009), with 5 being the most complex, are shown in Table 3.3. Overall,
participants found reordering multiple words the most complex, followed by
reordering a single word, deletion of multiple extra items, replacement of an
item, addition of missing items, corrections of the word form, and last, deleting
a single extra item. However, only the difference between reordering groups
(ROg) and deleting single items (Ds) is statistically significant (p < 0.05). The fact
that reordering was rated as most complex is interesting because it intuitively
is complex to perform with mouse and keyboard. In contrast, the typing tasks
(addition and replace single/part) are perceived as less complex, probably since
keyboards are well suited for this.

Referent Average σ

ROg 4.08 0.86
ROs 3.23 0.93
Dg 3.08 0.76
RPs 2.92 0.64
A 2.69 1.18
RPp 2.31 1.11
Ds 2.08 0.86

Table 3.3: Conceptual complexity as rated prior to eliciting interactions.

3.2.2 Unbiased Elicitation

Here we report the results of the initial, completely unbiased elicitation study,
including agreement rates, co-agreement rates and proposed modalities.

Agreement Rates

We consider suggestions as equal if they consider the same modalities, i.e., differ-
ent touch proposals are considered the same, while a touch and a pen proposal
are considered distinct. The reason for this is that most proposals with the same
modality could be supported in parallel, while the modalities have a direct im-
pact on the way the setup should be designed. We found an average agreement
rate for all referents of .282, which is comparable to the literature: Vatavu and
Wobbrock (2015) found an average agreement rate of .261 (min=.108 with N=12
participants, max=.430 with N=14) in 18 elicitation studies, and calculated that
90% probability is already reached for an agreement rate of .374 for N=20. Since
we have fewer participants, we recalculate the cumulative probability of our
agreement rate for N=13, resulting in a cumulative probability of 67.3%, which is
within the medium range [22.9%, 82%] proposed by Vatavu and Wobbrock (2015).
A reason for the medium level agreement rate could be the interplay between a
very restricted and well-known task (e.g., RPs) and the flexibility of proposals,
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where similar interactions with different modalities (e.g., with pen vs. touch)
were counted as distinct proposals.

The agreement rate and the corresponding cumulative probability with its inter-
pretation per referent is shown in Table 3.4. The highest agreement was reached
for replacing single items and can be interpreted as highly agreed upon, while
all other agreement rates need to be interpreted as medium according to Vatavu
and Wobbrock (2015). This suggests that replacement is intuitively solved with
similar approaches, while less agreement was shared amongst the other refer-
ents; however, only the extreme differences between replacing single items and
the deletions are significant (p = 0.021). Furthermore, Table 3.4 shows that all
agreement rates are statistically significantly larger than 0.

Referent AR CI95% Vrd PC Modalities
A .24 [.21,.49] 19* .58 (m) S(5), TS(4), MK(3), TpS
ROs .21 [.12,.54] 16* .50 (m) T(6), S(2), MK(2), P, ES, Tp
ROg .28 [.15,.59] 22* .67 (m) T(7), S(2), P, MK,MKS, Tp
RPs .46 [.24,.85] 36* .88 (h) S(9), T, TS, PS, TK
RPp .37 [.19,.72] 29* .80 (m) S(8), MK(2), T, TS, PS
Ds .21 [.14,.47] 16* .50 (m) T(5), S(4), P, TS, MS, TpK
Dg .21 [.14,.47] 16* .50 (m) T(5), S(4), P, TS, MK, TpK
All .28 - - .67 (m) -

Table 3.4: Agreement rate (AR), confidence intervals (CI95%), Vrd statistics against
zero (* means p = 0.001), cumulative probability (PC) and their interpretation
(m=medium, h=high), as well as the proposed modalities (with number of pro-
posal if >1) for all referents. The highest AR is shaded in cyan; the lowest ARs
are marked in bold.

Co-agreement Rates

The co-agreement, i.e., the agreement shared between two referents, between
reordering single and groups of items (.128 out of .205 = 62.4%) is lower than
that between deleting single and groups of items (.167 out of .205 = 82.5%),
suggesting that the two deleting referents are considered more similar than those
for reordering. A very high co-agreement exists between the two replacements
(.359 out of .372 = 96.5%), which suggests that replacing a single word or part of
a word require similar interaction.

Proposed Modalities

Of the 91 total proposals, speech was most commonly suggested (34), followed
by touch (25), mouse and/or keyboard (9), and touch combined with speech
(8). Apart from this, several less frequent proposals were made (see below),
of which 17 combined at least two modalities. More than half of all proposals
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(48) involved speech, while 39 proposals contained touch. According to the
subjective ratings on 7-point scales, participants thought their inventions were
good (averages in range [5.4,6.6]), easy to use ([5.3,6.6]), and a good alternative
to mouse and keyboard ([5.0,6.6]). Except for reordering groups (where it is
equal), the majority proposal achieved higher rates on all three scales than the
average among all proposals. While we did not test this for significance, it could
indicate that participants choosing the majority class feel more confident about
their proposal.

Speech

Speech was the majority proposal for the addition task (A) and replacement tasks
(RPs, RPp), but was also proposed second most often for the deletions (Ds, Dg)
(see Table 3.4). The suggestions were mostly trying to correct the mistake in place,
e.g., “(add) X before/after Y”; however, restating the correct sentence was also
suggested several times.

Participants appeared quite satisfied with their proposals, stating that speech
becomes better the more changes are required, or that it “would reduce tired-
ness”. For all tasks where speech was frequently proposed, it achieved average
goodness ratings in the range [5.8,6.2], ease of use ratings within [6.0,6.4], and
good alternative ratings within [5.6,6.0].

Touch

For reordering and deletion, touch was the majority suggestion: The idea was
mainly to select the word(s) that need to be moved/deleted by simple tapping,
encircling, or a long press followed by swiping over the words, and then dragging
towards the final position/pressing a delete button. Other ideas were to reorder
words by using several fingers simultaneously without prior selection, or to use
touch gestures on top of the words to be deleted.

Participants again appeared enthusiastic regarding the use of touch, stating “I
like this” or similar expressions. The importance of using a tilted screen and big
buttons was also emphasized. The average ratings for the touch proposals were
in the ranges [6.0,6.6], [5.9,6.6], and [5.3,6.6], for goodness, ease of use, and good
alternative.

Touch and Speech

For the task of adding missing words (A), the combination of touch and speech
was also proposed quite often for which it received average goodness ratings
of 5.5, ease ratings of 5.3, and good alternative ratings of 5.5. The proposal was
to place the finger at the correct position and verbally state “X” or “enter X” or
“space X” (which shows the legacy bias of the keyboard).
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Other Ideas

One participant liked the idea of having a touchpad for most referents while an-
other frequently proposed the digital pen, both proposing it at times in combina-
tion with speech input. Infrequently, eye tracking and gestures or combinations
thereof with other modalities were also proposed. One interesting idea from
the proposals was to select words by touch, followed by a snapping gesture or
swiping through the air, to make them disappear.

Some participants either were less creative or simply did not want to move away
from the current mouse and keyboard approach. Overall, the classical methods
were proposed 9 times and sometimes combined with speech.

Support tools were also often discussed: One participant suggested that when
clicking on the space between two words for insertion, alternatives should appear
to select from, while others asked for a list of different word forms or orderings
when selecting a word. Similarly, it was proposed to integrate a thesaurus, where
users can click on the word and see either synonyms, related words, or antonyms
to better support stylistic corrections.

Discussion

The proposals indicate that speech and touch are by far the most relevant modal-
ities. Overall, a medium level of agreement was reached among participants,
with a lot more agreement for the replacement tasks than for the other referents.
For reordering, touch was proposed most often; for replacement, speech; and
for insertion and deletion, both (or a combination) were suggested. The high
ratings also suggest that it is definitely worth investigating these modalities in
practice. While still only a few multi-modal approaches were suggested (18.7%),
this is already very high compared to Morris (2012) (3.1%). Even though we
asked participants to propose modalities other than mouse and keyboard, a few
participants were unable to come up with a different solution, which we see as a
strong legacy bias (Morris et al., 2014). This can also be seen from the fact that
most participants tended to propose select first, then X interactions known from
the mouse and keyboard even for the new modalities.

3.2.3 Biased Elicitation

The second part of the elicitation study was conducted similar to Morris (2012)
considering the priming and production strategies of Morris et al. (2014) to avoid
legacy bias. In settings with multiple proposals per participant, agreement rates
(Vatavu and Wobbrock, 2015) are not meaningful; instead, we use the metrics
max-consensus and consensus-distinct ratio (Morris, 2012).

Participants proposed on average two interactions per referent, leading to 185
interactions overall. These can be clustered into 18 distinct modality combinations
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(compared to 13 in the unbiased study). The most proposed modalities are the
pen (50), speech (31), touch (29), and pen combined with speech (17). This
differs strongly from the unbiased elicitation, where the pen was only proposed
four times while the percentage of touch and speech proposals was even higher.
Table 3.5 and 3.6 summarizes the findings per referent. Here, the overall max-
consensus and consensus-distinct ratios are again calculated on a modality level,
while the ratios per modality distinguish the different proposals per modality,
e.g., considering restating a whole sentence verbally as a distinct proposal from
saying “replace X by Y”, but considering the latter equal to “change X to Y”. This
allows to see both the consensus within and among modalities.

In contrast to the unbiased study, all participants came up with suggestions other
than keyboard and mouse for every single referent and assigned high subjective
ratings. This shows the importance of this second study phase to also elicit
opinions from participants who are rather reluctant towards new approaches.

Referent
Number
(tot/dist)

MM%
(tot/dist)

Common Proposals

A 21/12 38.1/63.6 P(6), S(4), PS(3)
ROs 29/7 3.5/14.3 P(10), T(8), E(4), S(3)
ROg 27/6 3.7/16.7 P(11), T(8), S(4)
RPs 25/10 48.0/60.0 S(8), PS(5), P(3)
RPp 22/8 31.8/62.5 P(7), S(5), T(3)
Ds 33/14 48.5/71.4 P(7), T(5), S(4), PS(3)
Dg 28/14 57.1/71.4 P(6), T(3), PS(3)

Table 3.5: Proposals per referent in the biased elicitation study: (total and distinct)
number of proposals, the percentage of multi-modal proposals (MM%), and
modalities suggested≥ 3 times. The highest scores are shaded in cyan, the lowest
in bold text.

ALL P T S PS
Referent

Cm Cd Cm Cd Cm Cd Cm Cd Cm Cd

A 46.2 0.27 83.3 0.50 - - 75.0 0.50 100 1.00
ROs 76.9 0.71 100 0.33 100 1.00 66.7 0.50 - -
ROg 84.6 0.66 90.9 0.50 87.5 0.50 50.0 1.00 - -
RPs 61.5 0.50 66.7 0.50 - - 100 1.00 80.0 0.50
RPp 53.9 0.62 100 1.00 66.7 0.50 80.0 0.50 - -
Ds 53.9 0.57 85.7 0.50 60.0 1.00 100 1.00 100 1.00
Dg 46.2 0.57 100 1.00 66.7 0.50 - - 67.7 0.50

Table 3.6: Proposals per referent in the biased elicitation study: the max-consensus
(Cm) and consensus-distinct (Cd, threshold = 2) ratios for all and the most frequent
modalities. The highest scores are shaded in cyan, the lowest in bold text.
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Most proposals were given for deleting single items, the least for additions (total)
and reordering groups (distinct). Compared to Morris (2012) (3.1%) and our
unbiased study (18.7%), we see far more multi-modal proposals (mean=33.0%).
Only the reordering referents received few multi-modal suggestions, probably
due to the high agreement on pen and touch, which do not require a secondary
interaction modality.

Inspecting the most common proposals, it seems that pen, speech, touch, and the
combination of pen and speech are by far the most important ones. The highest
max-consensus ratio (on modality level) was achieved for reordering with a pen.
Regarding the consensus-distinct ratio, the most consensus was again achieved
for the reordering referents, the lowest for additions. The overall average ratings
among all proposals for all referents were 6.0, 5.9, and 5.8 out of 7 for goodness,
ease of use, and good alternative, respectively, showing a high level of satisfaction
of the participants towards their proposals.

Pen

We see a max-consensus ratio of more than 80% for pen for all but one referent,
showing that participants would use the pen in a rather similar fashion. The
consensus-distinct ratio ranges from 0.33 to 1.00, meaning that either all agreed, or
there were one or two single alternative suggestions to the majority opinion. Most
translators suggested to simply write at the correct position for additions and
replacements (after strike-through), to select (e.g., by encircling or underlining)
and drag for reordering, and to use a strike-through for deletions. One participant
proposed the interactions in a proofreading style (e.g., using a missing sign or
drawing arrows) while another translator suggested to use a button integrated
into the pen (e.g., to pick up one or multiple words). In general, participants
were quite enthusiastic about the pen, also stating that it would be good since
it is more precise than touch. This can also be seen in the high average ratings,
with a goodness of 6.1, an ease of use of 6.1, and alternative being 5.9.

Touch

Touch was commonly suggested for all referents except additions (A) and replac-
ing single items (RPs), probably because these two require the most generation
of text. The max-consensus for touch is on average lower than that for pen,
and the consensus-distinct ratio varies between 0.5 and 1.0; this taken together
with the concrete touch proposals shows that participants agreed less on how to
interact with touch. Most proposals again took the form of selection followed by
some other action and the ratings were also very good with an average of 6.2 for
goodness, 5.9 for ease of use, and 6.0 for alternative.
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Speech

Speech was among the set of common suggestions for all referents except deleting
groups (Dg). In this case the max-consensus ratio is also on average lower than
that for pen, and the consensus-distinct ratio ranges from 0.5 to 1.0. Inspecting
the data, we see that it all boils down to the two proposals correct in place (e.g.,
“Add X after Y”) or restate correct sentence. One should note that except for deleting
and reordering groups (Dg and ROg), the option correct in place was always the
one favored by our participants. This makes sense as for more complex sentences
it might be simpler to reformulate the correct sentence, a fact that a participant
also pointed out as an explanation. Speech ratings were a bit lower, but still good,
having 5.8 for goodness, 5.9 for ease of use, and 5.5 for alternative.

Pen and Speech

The combination of pen and speech was proposed for all referents except for re-
ordering groups (ROg), with all proposers agreeing completely for additions (A),
replacing parts (RPp), and deleting single items (Ds). More distinct suggestions
were provided for replacing single items (RPs) and deleting groups (Dg). The
suggestions were all very straightforward, either placing the pen at a specific
position or selecting the important parts and then uttering a speech command.
The combination of pen and speech received the highest subjective ratings: 6.2
for both goodness and ease, and 6.3 for alternative.

Other Ideas

Apart from these common modalities, many other suggestions were made, al-
though most of them without consensus. Many suggestions combined eye/-
touch/touchpad/pen with a keyboard or speech. Interestingly, the keyboard
was sometimes only integrated for the delete key, but it was also suggested by
several participants who did not like handwriting. Gestures were occasionally
paired with speech or with eye tracking, e.g., by looking at an item and then
shaking the head or swiping through the air. It was also pointed out that ges-
tures would require a large screen, could activate muscles, and might be easy to
perform, but would initially require training. Eye tracking was also proposed
several times, e.g., by picking up and dropping words by blinking or combined
with a touch button or speech input. However, most participants were less
optimistic regarding eye tracking, expecting it to require high concentration.

As in the unbiased elicitation, several ideas for support tools arose: again the
idea of receiving a list of word forms, synonyms etc., which could be selected
with any interaction modality, was proposed. Furthermore, eye tracking was
suggested to mark the position the translator last looked at within the source
and target text, to avoid getting lost when scrolling, similar to the Gazemarks
approach (Kern et al., 2010).
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In general, several participants argued for multiple approaches working simul-
taneously to avoid tiredness and to be able to rest the hands or the voice from
time to time. Participants were often also confident that their suggestion could
be faster than mouse and keyboard.

Discussion

We find that both reordering and deletion tasks would be best supported by pen
and touch and to a lesser degree speech. For the insertion and replacement tasks
that also require the generation of new text, pen, speech, or pen combined with
speech appear to be most promising. In general, the pen was suggested very
often by participants and based on the discussions, they really liked the idea of a
digital pen for PE. Participants were often also confident that their suggestion
could be faster than mouse and keyboard. Apart from reordering, there were
lots of multi-modal suggestions, most commonly pen and speech, but also (albeit
without consensus) a lot of eye/gesture + X approaches. Several participants
also argued for multiple approaches working simultaneously to avoid tiredness
and to be able to rest the hands or the voice from time to time. The legacy bias
appeared lower in this biased elicitation, which can be seen in the vast amount of
suggestions of modalities that people do not usually use in their daily lives, and
the fact that no one came up only with mouse and keyboard, as was the case in
the first unbiased elicitation study. Therefore, we argue that it is worth doing this
two-step setup, as it provides insights into the overall user model but also into
their thoughts on possible approaches.

3.2.4 Multi-Modal CAT Setup

Next, we discussed what the participants would imagine their CAT system to
look like. Regarding screens, 9 participants preferred having only a single screen;
however, we see a clear tendency towards big screens: only 3 participants (two
of whom wanted more than 1 screen) argued for a normal screen size, while 7
requested a big, and 3 even a giant screen (e.g., flipchart-sized). 2 translators
proposed editing on a touchscreen placed on the table combined with other tools
above this editing area. In general, 7 participants argued for a tiltable screen for
better adjustment of the viewing angle and improved touch interaction. This is in
line with the feedback we received during the two elicitation tasks, where most
participants that proposed a touch or pen interaction simultaneously argued for
a tilted screen layout. Furthermore, 3 participants asked for a setup that allows
one to work both in a seated and a standing position. Apart from this relatively
straightforward setup, the idea to integrate hardware buttons or even interact
with the feet was also proposed, e.g., to confirm segments.

Regarding the interface, the arrangement of source and target text was a widely
discussed topic with most translators (9/11) arguing for a horizontal layout. The
integration of browser functionality like an online corpus, synonyms, encyclo-
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pedia, dictionaries, forums, etc. into the interface was also mentioned 4 times.
Displaying the text in the correct document format was another emerging topic:
3 proposed to see a preview of the target, 1 wanted to see the source, and another
requested both.

Many different arrangements of common CAT features were proposed. Some
discussed the importance of having everything relevant (TM, dictionary, etc.) on
the same horizontal level as the current segment, while others also proposed more
vertical arrangements. One participant argued for movable interface elements,
which, given the amount of distinct layouts proposed, is probably the best and
only good option, even if it remains to be seen if this customization would be
used in practice (see Coppers et al. (2018)). 2 argued for enlarging only the
current segment, allowing the user to view a lot of context and still see the
current segment in a comfortable manner. This would also facilitate pen or touch
interaction, as it offers more space.

Further interesting ideas were to enlarge words upon selection, and to read back
text (text-to-speech) while reading with the eyes to detect errors more easily. One
participant proposed to ambiently display images of words you are looking up or
currently editing within the room (through a projection) while another participant
involved in technical translation proposed to display 3D visualizations of the
machines that the text is about.

3.2.5 Limitations

Since the whole study was based only on elicited ideas, all findings need to be
verified on a working prototype. Only after such tests would it be possible to
fairly compare the techniques, including all potential technical limitations.

3.3 Conclusion

Due to the changed task and interaction patterns compared to classical translation,
we sought out to investigate the PE process more strongly from an interaction
modality perspective. For a well-structured test, we first propose a set of common
operations (referents) necessary for PE and find that translators believe reordering
tasks to be the most complex. After having run an elicitation study using this set
of referents, we find that a lot of agreement is shared between replacing single
items and parts of items, and thus would reduce our proposed set to addition (A),
reorder single/group (ROs/ROg), replacement (RP ), and delete single/group
(Ds/Dg) in the future. Note that this set of operations appears more suitable for
NMT, which produces very fluent text having mostly correct word forms, but
tends to make wrong lexical choices, as it prioritizes word-level manipulations
over sub-word-level operations.
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However, our initial, completely unbiased elicitation study, showed that partic-
ipants mostly envision touch and speech modalities for these referents, while
other modalities were only rarely suggested. We believe this to come from the
limited background of the participants with interactive systems and a strong
legacy bias. However, the participants’ high subjective ratings indicate that they
were quite satisfied with their proposals.

After having introduced the translators to a set of common modalities, their
proposals changed, where now the digital pen was considered a favorite together
with speech, and touch. Taken together the ratings and the strong agreement
on these three modalities, we argue that one should move away from mouse
and keyboard-only approaches and investigate such interactions in practice.
Based on the statements that several modalities should work in parallel to avoid
monotonicity and thereby possibly fatigue, we believe that these commonly
proposed modalities should all be supported for every single referent. This
would allow switching the interaction mode but avoid enforcing such modality
shifts as it could irritate users if some modalities only work for a subset of
referents. In contrast, other modalities like eye tracking or gestures appear less
promising for this application area.

For the overarching goal of this part of the thesis, namely to investigate whether
interaction modalities other than mouse and keyboard could well support the
PE process, this initial chapter ensured a user-centered investigation and basic
understanding of the potential of different modalities. Furthermore, the initial
unbiased approach aimed to ensure that no important modalities are missed
as might have happened in a purely developer-driven implementation. Finally,
the qualitative findings in the various interviews throughout the two elicitation
studies, as well as the semi-structured interview on CAT design allowed to grasp
the mindset and user needs of professional translators, thereby helping us to
make more suitable design decisions in the chapters ahead.
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Chapter 4
MMPE: A Multi-Modal Interface using
Handwriting, Touch Reordering, and
Speech Commands for Post-Editing

Machine Translation

Based on the findings elicited from professional translators, this chapter now
presents MMPE, the first translation environment combining standard mouse &
keyboard input with touch, pen, and speech interactions for PE of MT. We will
first present the prototype, allowing users to directly cross out or hand-write new
text, drag and drop words for reordering, or use spoken commands to update the
text in place. All text manipulations are logged in an easily interpretable format
(e.g., replaceWord with the old and new word) to facilitate translation process
research. We evaluate this prototype in a study with 11 professional translators,
showing that participants are enthusiastic about these alternatives, and suggest-
ing that pen and touch are well suited for deletions and reorderings, whereas
speech and multi-modal input is suitable for insertions and replacements.

This chapter is based on publications Herbig et al. (2020b) and Herbig et al.
(2020c).

4.1 Prototype

This section presents the MMPE prototype, which combines pen, touch, and
speech input with a traditional mouse and keyboard approach for PE of MT. The
prototype is designed for professional translators in an office setting. A video

117



demonstration is available at https://youtu.be/tkJ9OWmDd0s. MMPE specif-
ically focuses on traditional PE, in contrast to translation from scratch or interac-
tive machine translation.

4.1.1 Apparatus

On the software side, we decided to use Angular25 for the frontend, and node.js26

for the backend. The frontend, including all of the newly implemented modalities
for text editing, is what the system currently focuses on. While this Angular
frontend could be used in a browser on any device due to the usage of Boot-
strap27, we initially design for the following hardware to optimally support the
implemented interactions:

As requested by the majority of translators in the elicitation study reported in
chapter 3, we use a large tiltable touch & pen screen (see Figure 4.1), namely the
Wacom Cintiq Pro 32 inch display. Together with the Flex Arm, the screen can
be tilted and moved flat on the table (similar to how users use a tablet), can be
vertically positioned like a normal screen, or be moved up in the air to work
in a standing position. Wacom displays such as this one are rather expensive
(ca. 3500 Euro28) but also known for very accurately recognizing pen input at
different angles and pressure levels with little delay, since they target professional
drawing, design, sketching, as well as image and video editing. We further use
the Sennheiser PC 8 Headset (ca. 35 Euro29) for speech input, although informal
tests showed that the ASR indeed does work well with most headsets and only
suffers with microphones integrated in laptops. Last, mouse and keyboard are
provided. The goal of this setup was to limit bias induced as much as possible, in
order to get results on the modalities and not on a flawed hardware setup.

Since it is not the focus of this work, the backend is kept rather minimal: It allows
saving and loading of projects from JSON files, can store log files, etc. Here, the
project files simply contain an array of segments with source, target, as well as
any MT or TM proposal that should initially be shown for PE.

4.1.2 Overall Layout

As can be seen in Figure 4.2 and as requested in our initial elicitation study, we
implemented a horizontal source-target layout, through which the user can verti-
cally scroll using the mouse wheel or a touch drag. Similar to well-known CAT
tools like SDL Trados Studio, each segment’s status (unedited, edited, confirmed)
is visualized between source and target. On the far right, support tools are of-

25https://angular.io/
26https://nodejs.org/en/
27https://getbootstrap.com/
28At the time of writing.
29At the time of writing.
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Figure 4.1: Apparatus of MMPE.

fered as requested in the semi-structured interview on the interface setup: (1) the
unedited MT output, to which the user can always revert to during their editing
using a button, and (2) a corpus combined with a dictionary: when entering a
word or clicking/touching a word in the source view on the left, the Linguee30

website is queried to show the word in context and display its primary and
alternative translations. The top of the interface shows a toolbar where users
can enable or disable speech recognition and spell checking, and save and load
projects, or navigate to another project.

Figure 4.2: Screenshot of the MMPE interface.

The current segment is enlarged, thereby offering space for handwritten input
and allowing the user to view a lot of context while still seeing the current
segment in a comfortable manner (as requested in the interviews, see Figure 4.2).
The view for the current segment is further divided into the source segment (left)
and two editing planes for the target, one for handwriting and drawing gestures
(middle), and one for touch deletion & reordering, as well as standard mouse

30https://www.linguee.com/
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and keyboard input (right). Naturally, for mouse and keyboard all common
navigation inputs and shortcuts work as expected from other software (e.g.,
ctrl+arrow keys or ctrl+c). Both editing planes initially show the MT proposal
and synchronize on changes to either one. The reason for having two editing
fields instead of only one is that some interactions are overloaded, e.g., a touch
drag can both be interpreted as handwriting (middle) and reordering (right). As
we will see in the evaluation, having two views next to each other was considered
problematic by our participants, thus, the two views were later on redesigned
into tabs as described in chapter 5. Undo and redo functionality, as well as
confirming segments, are also implemented through buttons between the source
and target texts, and can further be triggered through hotkeys. The target text is
spell-checked, as a lack of this feature was criticized in Teixeira et al. (2019).

4.1.3 Handwriting

For handwriting recognition (see Figure 4.3a), we use the MyScript Interactive
Ink SDK31 which is one of the market leaders in handwriting recognition. Apart
from merely recognizing the written input, it offers gestures32 like strike-through
or scribble for deletions, breaking a word into two (draw line from top to bottom),
and joining words (draw line from bottom to top). For inserting words, one
can directly write into empty space, or create such a space first by breaking
the line (draw a long line from top to bottom), hand-writing the word, and
joining the lines again (draw line-crossing line from top to bottom). While
these gestures are similar to the ones requested in our elicitation study above,
they are not identical. However, since they are the same as the ones used in
the widespread MyScript Nebo note taking app33, we decided to use these
well designed and tested gestures instead of defining new ones ourselves. All
changes are immediately interpreted, i.e., striking through a word deletes it
immediately instead of showing it in a struck-through visualization. While
reordering is not supported out of the box, as it is less common in normal note-
taking scenarios, we allow reordering words with the pen on the right-hand
editing view, as described in the next section. The editor further shows the
recognized handwritten text immediately at the very top of the drawing view in
a small gray font (see Figure 4.3a), where alternatives for the current recognition
are offered when clicking on a recognized word. Since all changes from this
drawing view are immediately synchronized into the right-hand view, the user
can also see the recognized text there. While it is not necessary to convert text
from the handwritten appearance into computer font, the user can do so using a
small button at the top of the editor. Apart from using the pen, the user can use
his/her finger or the mouse on this handwriting view.

31https://developer.myscript.com/
32https://developer.myscript.com/docs/concepts/editing-gestures/
33https://www.nebo.app/

120

https://developer.myscript.com/
https://developer.myscript.com/docs/concepts/editing-gestures/
https://www.nebo.app/


(a) Handwriting on left target view.

(b) Handwriting gestures sup-
ported by MyScript (image taken
from the MyScript website34).

Figure 4.3: Handwriting in MMPE.

4.1.4 Touch Reordering & Deletion

Further touch input (i.e., both finger and pen interaction) is supported on the
right-hand editing view: The user can delete words by simply double-tapping
them, or reorder them through a simple drag and drop procedure (see Figure 4.4).
This procedure visualizes the picked-up word as well as the current drop position
through a placeholder element. Spaces between words and punctuation marks
are automatically fixed, i.e., double spaces at the pickup position and missing
spaces at the drop position are corrected. This reordering functionality is strongly
related to Teixeira et al. (2019); however, instead of having all words in a tiled
view, which has been criticized to lead to bad readability (see Figure 2.20), only
the currently dragged word is temporarily visualized as a tile to offer better
readability. Furthermore, the cursor can be placed between words using a single
tap, allowing the user to combine touch input with e.g., the speech or keyboard
modalities (see below).

4.1.5 Speech Input

For speech recognition, we stream the audio recorded by the headset to IBM
Watson35 servers to receive a transcription, which is then analyzed in a command-
based fashion. Thus, our speech module not only handles dictations as in Teixeira
et al. (2019), but can correct mistakes in place.

The transcription itself is visualized at the top of the right target view (see
Figure 4.4). As commands, the user has the option to “insert”, “delete”, “replace”,
and “reorder” words or subphrases. To specify the position if it is ambiguous,

34https://developer.myscript.com/docs/concepts/editing-gestures/
35https://www.ibm.com/cloud/watson-speech-to-text
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Figure 4.4: Touch reordering on right target view in MMPE.

one can define anchors as in “after”/“before”/“between”, or define the occurrence
of the token (“first”/“second”/“last”). A full example is “insert A after second B”,
where A and B can be words or subphrases. In contrast to the other modalities,
character-level commands are not supported, so instead of deleting an ending,
one should replace the word. For the subsequent study, we set the speech
recognition to German and also added a few synonyms for each of the four cases
(e.g., ‘lösche’ and ‘entferne’ for ‘delete’) to allow for more flexibility. Apart from
enabling and disabling speech in the navigation bar, the headset further provides
a hardware button for muting, which turned out to be very useful in preventing
erroneous recognitions when participants were simply talking to experimenters.
Again, spaces between words and punctuation marks are automatically fixed
upon changes. For the German language, nouns are automatically capitalized
using the list of nouns from Wiktionary36.

4.1.6 Multi-Modal Combinations

Oviatt (2003) argues that multi-modal combinations often work better than uni-
modal systems. Therefore, MMPE further offers multi-modal combinations, i.e.,
pen/touch/mouse combined with speech. For this, a target word/position first
needs to be specified by placing the cursor on or next to a word using the pen,
finger touch, or the mouse/keyboard; alternatively, the word can be long-pressed
with pen/touch. Afterwards, the user can use a voice command like “delete”,
“insert A”, “move after/before A/between A and B”, or “replace by A” without needing
to specify the position/word, thereby making the commands less complex.

36https://en.wiktionary.org/wiki/Category:German_noun_forms
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4.1.7 Logging

We implemented extensive logging functionality: On the one hand, we log the
concrete keystrokes, touched pixel coordinates, etc.; on the other hand, all UI
interactions (like segmentChange or undo/redo/confirm) are stored, allowing us to
analyze the translator’s use of MMPE.

Most importantly, however, we also log all text manipulations on a higher level to
simplify text editing analysis: For insertions, we log whether a single or multiple
words were inserted, and add the actual words and their positions as well as the
segment’s content before and after the insertion to the log entry. Deletions are
logged analogously, and for reorderings, we add the old and the new position of
the moved words to the log entry. Last, for replacements, we log whether only a
part of a word was replaced (i.e., changing the word form), whether the whole
word was replaced (i.e., correcting the lexical choice), or whether a group of
words was replaced. In all cases, the words before and after the change, as well
as their positions and the overall segment text are specified in the log entry.

Furthermore, all log entries contain the modality that was used for the interaction,
e.g., speech or pen, thereby allowing the analysis of which modality was used for
which editing operation. All log entries with their timestamps are created within
the Angular client and sent to the node.js server for storage in a JSON file.

4.2 Evaluation Method

The prototype was evaluated with professional translators. The study has been
approved by the university’s ethical review board. Freelance participants were
paid their usual fee, while in-house translators participated during working hours.
The data and analysis scripts can be found at https://mmpe.dfki.de/data/
ACL2020/. We used EN-DE text, as our participants were German natives and
we wanted to avoid ASR recognition errors as reported in Dragsted et al. (2011).
In the following, “modalities” refers to Touch (T), Pen (P), Speech (S), Mouse &
Keyboard (MK), and Multi-Modal combinations (MM), while “operations” refers
to Insertions, Deletions, Replacements, and Reorderings.

The study took approximately 2 hours per participant and involved three separate
stages. First, participants filled in a questionnaire capturing demographics as well
as information on CAT usage. In stage two, participants received an explanation
of all of the prototype’s features and then had time to explore the prototype on
their own and become familiar with the interface. Finally, stage three included the
main experiment, which was a guided test of all implemented features combined
with Likert scale ratings and interviews, as described in detail below. In the
end, a final unstructured interview to capture high-level feedback on the MMPE
prototype was conducted.
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4.2.1 Introduction & Independent Post-Editing

After providing informed consent to use the gathered data, participants filled in
a questionnaire capturing demographics as well as information on CAT usage.
Then the experimenter introduced all of the prototype’s features in a prepared
order to ensure a similar presentation for all participants. The project used
during this introduction phase contained a text on the newly announced Game
of Thrones Prequel37 as source, which was pre-translated using IBM Watson.

After that, participants were given 10-15 minutes to explore the prototype by PE
a Broadway musical review38 on their own. We specifically told them that we are
more interested in them exploring the presented features than in receiving high-
quality translations, and that they do not have to post-edit the whole text as this
would not be feasible in the given time. This phase had two main purposes: (1) to
let the participants become familiar with the interface (e.g., how to best hold the
pen) and to resolve questions early on; (2) to see how participants intuitively work
with the prototype without being biased. Furthermore, the hope was to identify
missing features in the current implementation. Two experimenters carefully
observed the participants’ behavior and took notes on interesting behavior and
questions asked. Furthermore, the interactions were logged by the system as
described above.

4.2.2 Feature-Wise & General Feedback

The central part of the study was a structured test of each modality for each of
our four operations. For this, we used text from the WMT news test set 2018.
Instead of actually running a MT system to generate the initial version of the
target sentences, we manually introduced errors into the reference set to ensure
that there was only a single error per segment. Overall, four sentences had to be
corrected per operation (4) using each modality (5), which results in 4×4×5 = 80
segments per participant. Within the four sentences per operation, we tried to
capture slightly different cases, like deleting single words or a group of words,
or replacing the ending or a whole word. For this experiment, we adapted the
prototype such that a pop-up occurs when changing the segment, which shows
(1) the operation to perform and which modality to use, (2) the source and the
“MT”, which is the reference with the introduced error, as well as (3) the correction
to apply, which uses color, bold font, and strike-through to highlight the required
change (see Figure 4.5). Participants were instructed to only perform this single
requested change, even if they would rephrase the translation for stylistic reasons.

The reason why we provided the correction to apply was to ensure a consistent
editing behavior across all participants, thereby making subjective ratings and

37https://edition.cnn.com/2019/10/29/entertainment/game-of-thrones-
prequel-house-of-the-dragon-hbo/index.html

38https://www.nytimes.com/2019/03/21/theater/aint-too-proud-review-
the-temptations.html
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Figure 4.5: Popup giving instructions during the study.

feedback as well as time measurements comparable. The logging functionality
was extended, such that times between clicking “Start” and confirming the
segment were also logged. To avoid ordering effects, the participants went
through the operations in counter-balanced order, and through the modalities in
random order. After every operation (i.e., after 4× 5 = 20 segments) and similar
to our elicitation study, participants rated each modality for that operation on
three 7-point Likert scales ranging from “strongly disagree” to “strongly agree”,
namely whether the interaction “is a good match for its intended purpose”,
whether it “is easy to perform”, and whether it “is a good alternative to the
current mouse and keyboard approach”. Furthermore, we asked the translators
to give us their thoughts on advantages and disadvantages of the modalities, and
how they could be improved. Afterward, participants further had to order the 5
modalities from best to worst for each operation.

4.2.3 Remarks Regarding Methodology

While a direct comparison to state-of-the-art CAT tools would be interesting, the
results would be highly questionable as the participants would be expert users
of their day-to-day tool and novice users of our tool. Furthermore, the focus of
our prototype was on the implemented modalities, while widely used features of
fully-fledged CAT tools like a TM or consistency checker are currently missing.

Therefore, our study focused on qualitative feedback, which is more relevant for
the main question, namely which of the newly implemented features have poten-
tial for which PE operations. To not merely gather free-form statements from the
participants, we further captured ratings, orderings and timing information of
the modalities for the analyzed operations. To ensure comparable results here,
we did not use actual MT output but text with manually prepared errors.
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4.3 Results

We first present the demographics of our participants, then report findings on
hardware setup, layout, and interface design, before we go over to the subjective
ratings, orderings, and the required time per operation with each modality. In
the end, we report further qualitative results on the specific modalities, as well as
missing features and general feedback.

4.3.1 Participants

Overall, 11 (female=10, male=1, 2 left-handed) professional EN-DE translators
participated in the experiment, 3 freelance and 8 in-house translators. Their
ages ranged from 30 to 64 (mean=41.6, σ=9.3), with 3 to 30 years of professional
experience (mean=13.3, σ=7.4) and a total of 27 language pairs (mean=2.6). All
translators translate from EN to DE, and all describe their German Language
skills as native and their English skills as C1 to native level (C1=3 times, C2=6,
native=2). For most participants, the self-rated CAT knowledge was good (6
times) or very good (4 times, 1 neutral for the oldest participant). However,
participants were less confident about their PE skills (4 neutral, 4 good, 3 very
good), thereby matching well with the CAT usage surveys. Years of experience
with CAT tools ranged from 3 to 20 (mean=11.5, σ=5.1), where participants had
used between 1 and 10 distinct CAT tools (mean=4.9, σ=2.7), most frequently
using SDL Trados Studio (10), Across (8), MemoQ (8), Transit (6), and XTM (6).
Overall, participants are quite satisfied with their current CAT tools (mean=5.3,
σ=1.0, on a 7-point scale). The most used features are TM (10 participants), MT
(8), and Terminology Management (8). For the following analyses, one should
note that the small number of participants and their age distribution (with 10
participants of age 30 to 48, and only one of age 64) did not allow to analyze the
effect of age on the results.

4.3.2 Hardware Setup

Four participants commented very positively about the large movable screen
(“the screen is great”/“really love the screen”). While one participant decided to
work in a standing position throughout the whole study and two participants
worked with a tilted screen, we were surprised to see that most participants
actually placed it in a normal upright position, probably because this setup was
most familiar to them. A reason could be that they explored all features, including
mouse and keyboard, and were therefore simply used to this setup. However,
one participant who explored handwriting a lot without tilting the screen already
asked whether this would be problematic for the shoulder in the long run.
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4.3.3 Layout & Interface Design

Regarding interface design, participants highlighted that they really liked the
large font size chosen for the current segment, because “you really see what
you are working on” which sometimes is not that easy in other CAT tools. The
chosen colors were also positively commented two times as they help finding
the position one is currently editing, however, one participant did not like the
dark mode for the surrounding segments, and would prefer pastel colors for
this. While more participants told us that they prefer a horizontal src-tgt layout,
one participant said that a switch to change between the two would be nice.
Furthermore, some adaption possibilities, like changing the sizes of the windows
were requested, enlarging the confirm button and repositioning it to the right
or below the target, and that the current segment should be always in the same
position. In general, we received mostly positive feedback, claiming it would be
“user friedly”, “I like the interface”, that the layout is nice, etc. One participant
suggested that we should further focus on small screens, like tablets, where he
sees potential for occasional PE.

We noticed that some participants were confused which operations could be done
on the right-hand and which on the left-hand view, although they apparently
became used to it over time and also confirmed that. E.g., two participants tried
placing the cursor on the drawing view, which instead painted a dot at that
position. A participant also assumed that the cursor on the right-hand side is
automatically placed after the last handwritten input on the left, s.t. one could
immediately continue typing there, which would be a nice addition to the current
prototype. Approaches to solve this confusion were named: Simply labeling
them might already help, using different sides of the pen for different actions, or
simply having a switch to enable/disable the drawing mode. The consolidation
of both views would also make them bigger, which would be useful according to
a participant.

4.3.4 Subjective Ratings

Figure 4.6 shows the subjective ratings provided for each modality and operation
on the three scales “Goodness”, “Ease of use”, and “Good alternative to mouse
& keyboard” after having tested each feature (see Section 4.2.2). As can be seen,
participants tended to give similar ratings on all three scales.

For insertions and replacements, which required the most text input, the classi-
cal mouse & keyboard approach was rated highest; however, the multi-modal
combination and speech were also perceived as good, while, pen and especially
touch received lower scores.

For deletions and reorderings, pen, touch, and mouse & keyboard were all
perceived as very good, where the P and T were even slightly higher ranked than
MK for reorderings. Speech and multi-modal input are considered worse here.
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(a) Insertions.
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(b) Deletions.
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(c) Replacements.
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(d) Reorderings.

Figure 4.6: Subjective ratings of the five modalities (P=Pen in orange, T=Touch in
red, S=Speech in blue, MK=Mouse & Keyboard in green, MM=Multi-Modal in
purple) for the four operations (insertions, deletions, replacements, reorderings)
on the 7-point Likert scales for goodness, ease of use, and whether it is a good
alternative to MK.

4.3.5 Orderings

After each operation, participants ordered the modalities from best to worst, with
ties being allowed. As an example, for “MM & S best, then P, then MK, and last
T” we assigned 0.5 times the 1st and 0.5 times the 2nd position to both MM and S,
while P got 3rd, MK 4th, and T the 5th position. To get an overall ordering across
participants, we then multiplied the total amount of times a modality was rated
1st/2nd/3rd/4th/5th by 1/2/3/4/5 (similar to Zenner and Krüger (2017)). Thus,
lower scores indicate that a modality is better suited for an operation.

The scores for each modality and operation are:

• Insertions: 1st: MK(20.5), 2nd: MM(26.5), 3rd: S(31.5), 4th: P(38.5), 5th: T(48)

• Deletions: 1st: P(21.5), 2nd: MK(29), 3rd: T(31.5), 4th: MM(41), 5th: S(42)

• Replacements: 1st: MK(21), 2nd: MM(29), 3rd: S(30), 4th: P(35), 5th: T(50)

• Reorderings: 1st: P(21.5), 2nd: T(31), 3rd: S(35.5), 4th: MK(36), 5th: MM(41)
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4.3.6 Timings

We analyzed the logged duration of each modality-operation-pair. Note that this
is the time from clicking “Start” until confirming the segment; thus, it includes
recognition times (for speech and handwriting) and really measures how long
it takes until a participant is satisfied with the edit. Even though participants
were instructed to provide feedback or ask questions only while the popup is
shown, i.e., while the time is not measured, participants infrequently did so
during editing. We filtered out such outliers and averaged the 4 sentences of each
modality-operation pair per participant to get a single value, thereby making the
samples independent for the remaining analyses.

Figure 4.7 shows boxplots of the dataset for the 20 modality-operation pairs. For
statistical analysis, we first conducted Friedman tests per operation, showing us
that significant differences exist for each operation (all p < 0.001). Afterward,
post-hoc analyses using Wilcoxon tests with Bonferroni-Holm correction showed
which pairs of modalities are significant and how large the effect r is.
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Figure 4.7: Editing durations per operation (insertion, deletion, reordering, re-
placement) and modality (P=Pen in orange, T=Touch in red, S=Speech in blue,
MK=Mouse & Keyboard in green, MM=Multi-Modal in purple).

For insertions, MK was by far the fastest modality, followed by MM and S. All
differences except for MM vs. S and T vs. P are statistically significant with large
effect sizes (all p < 0.01, all r > 0.83).

As expected, deletions were faster than insertions. Here, MK, T, and P were the
fastest, followed by S, and by far last MM. Regarding significance, all modalities
were significantly faster than MM, and MK was significantly faster than S (all
p < 0.01, all r > 0.88).
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For reordering, P and T were the fastest, followed by MK and S. The statistical
analysis revealed that T is significantly faster than all modalities except P, both P
and MK are significantly faster than S, and S is significantly faster than MM (all
p < 0.05, all r > 0.83).

Replacements with MK were fastest, followed by P, T, S, and MM. MK was
significantly faster than all other modalities, P significantly faster than S and MM
(all p < 0.05, all r > 0.83); no significant differences exist between the others.

4.3.7 Qualitative Analysis

Apart from the ratings and timings, we present the main qualitative feedback
from the interviews.

Pen & Touch

Insertions & Replacements One participant described handwriting as “fun
but not effective”, while others were more positive, finding it “super”, “quick”,
and ”very delicate”. A participant stated that the “pen symbolizes the writer,
and every translator is a writer, which nicely resembles this”. Especially for short
insertions and replacements, handwriting was seen as a suitable input mode; for
more traditional translation from scratch or more extended changes, one should
instead fall back on typing or dictation. Furthermore, the additional movement
compared to normal typing was emphasized.

The pen was considered to have a nice shape and feel pleasant (2 participants).
Most participants seemed to prefer the pen to finger handwriting due to its
precision, however, two participants preferred finger handwriting as it would be
more direct and natural. One participant said that she would even finger-write
on paper if ink was coming out of it. In general however, the thickness of the
finger seemed to impede the recognition for most.

Space management was the most criticized aspect about handwriting, the main
issues being that one has to think about how to ensure having sufficient space,
and that the gesture to create space was not always well recognized. To improve
this, participants suggested to make the space (font size, line height, etc.) config-
urable to one’s own handwriting, or to create space automatically. Another issue
mentioned by multiple participants was that placing the palm of the hand on the
screen resulted in switching the segment, which made handwriting more difficult
and should be automatically ignored. Furthermore, strokes that started in the
line of the recognized text at the very top of the drawing view (see Figure 4.3a),
were ignored, which irritated several participants. To solve this, one could simply
add additional space between this line and the first actual line. A participant by
accident pressed the button on the pen during writing, resulting in handwriting
to be triggered already during hover with the pen, i.e., before an actual touch
occurs, and an accidental double-click on the button resulted in the context menu
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appearing. Thus we should disable this button in the future. Last, ideas to further
improve the handwriting were to train the handwriting for the participant, and
to automatically convert the handwriting to computer font.

Deletion Both touch/pen deletion mechanisms (strike-through and double-tap)
were highlighted as very useful or even “perfect”; as they “nicely resemble a
standard correction task”. Some favored the double-tap approach, others the
strike-through approach. Furthermore, the possibility to delete longer subphrases
or even multiple lines through a quick diagonal strike-through was further
emphasized. There was no clear opinion whether touch was better or worse then
pen, some finding it more natural, others less precise.

Reordering Participants also provided very positive feedback regarding touch/
pen reordering, 9 participants stating that it is “super”/“works quite well”, that
they “loved it”, or is “really cool” mostly because it is fast, there is no need to wait
and see if the recognition worked, and that it is similar to a standard correction
task. However, moving multiple words simultaneously should be supported
for touch/pen, but also for multi-modal reordering. While the automatic space
management was considered “amazing”, a participant argued that the capital-
ization should also be automatically fixed when moving a word from/to the
beginning of a sentence. Last, a participant noticed that the text jumps around a
bit while reordering, as the picked up word is removed from the text resulting in
a shift of word. Instead one could prevent this by visualizing a large whitespace
where the word came from and only adapting the text on drop. Furthermore, the
visualization of the end position should be improved. Participants considered
touch and pen reordering to work comparably well. 4 participants claimed that
touch was better than pen for this task, however, others pointed out that for very
small words which frequently occur in Portuguese the finger might not be precise
enough, and that the small tip of the pen occludes the text less.

Speech & Multi-modal Combinations

Feelings regarding speech recognition were rather mixed, some thinking it works
“super”, being “positively surprised by the speech commands”, while others
thought it is a bit slow or imprecise and that they could not really imagine using
it often. One advantage as stated by a participant would be that it helps reduce
tenosynovitis, which many translators are dealing with due to frequent typing;
furthermore, it would be especially useful for handicapped translators. Two
participants argued against speech as it would be exhausting to formulate a com-
mand while one is already processing the source and target text. Furthermore,
speech was considered impractical for translators working in shared offices. In-
terestingly, a participant spoke very slowly and well-articulated in the beginning
until s/he noticed after a while that talking normally actually works much better.
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There was no clear opinion whether the multi-modal approach or speech was
preferred. The main advantage of the multi-modal approach was that “one has
to speak less”, “could be really fast”, involving “less thinking”. However, it was
also argued that you “can’t work hands off”, or that “when you talk you can also
just say everything”, meaning that the simplified MM command was not seen as
an advantage for this participant. An interesting statement was: “if there are no
ambiguities, speech is better, but if there are, multi-modal is cool”. Especially for
the simple task of deletion “doing two things” was considered “too complex”.

Ideas on how to improve speech ranged from better highlighting the changes
in the target view, to adding the possibility to restate the whole segment. While
the ASR tool used (IBM Watson) is one of the state-of-the-art APIs, it might still
have negatively impacted the results for S and MM, as several times a word was
wrongly recognized (e.g., when replacing a word due to an incorrect ending, the
ASR did not always correctly recognize the word form). To improve this aspect,
participants discussed the idea of passing the text to the speech recognition
(similar to the TransTalk project, see Dymetman et al. (1994)) or to train the
ASR towards the user. Furthermore, participants proposed to add automatic
capitalization depending on punctuation, or applying character-level changes
(e.g., remove last character of word), and to offer undo/redo/confirm commands
through speech input. Furthermore, a participant said that it would be useful
if the ASR could understand both source and target language instead of just
one, especially if a word was not translated (undertranslation). Currently, our
implementation only supported normal words, so multiple participants requested
to be able to manipulate punctuation marks as well, or to use them for specifying
position (“after second comma”). We further figured out a few synonyms we
should add for our commands, as well as supporting a changed order within
our commands (e.g., stating the position before the entity to insert). Sometimes
participants started a command, then made a short break, and continued their
command afterwards, which made our prototype assume it were two commands,
which were both incomplete, and thus resulted in no change at all, which should
be fixed in the future.

Insertions & Replacements Both insertions and replacements using speech
received lots of positive feedback (from 8 and 7 participants, respectively), inter-
esting findings being that “the longer the insertion, the more interesting speech
becomes” and that speech would be more suitable for replace and delete opera-
tions as there is usually no need to specify the position. However, a participant
also considered it too complex for small replacement changes, saying “while I
talk I could just fix it using mouse and keyboard”.

Deletions Speech also received some positive feedback for deletions, stating
that it “works fine” and recognizes well, or would be simpler for deletions than
for insertions as one has to talk less. The automatic correction of spaces was also
highlighted as a nice feature. However, others commented negatively that they
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cannot really imagine using speech for deletions, that if it misrecognizes you this
costs a lot of time, and that it would be bad to have to read 10 words if one wants
to delete 10 words. Again, further commands should be supported, but also that
deleting the whole sentence should be possible.

Feedback on multi-modal deletions was rather negative, the main disadvantage
being that one has to think about and do two things, which is too complex for
this simple task. “If all modalities work well by themselves, then why combine
them?”. Another disliked aspect was that multi-word delete was currently not
supported in the multi-modal approach.

Reordering Speech reordering was considered more complicated than using the
pen or touch, however, the automatic correction of spaces was again highlighted
as a nice feature. Remarks on multi-modal ordering were again mixed, since one
has to say less but do two things.

Mouse & Keyboard

Due to their daily usage, participants stated they were strongly biased regarding
mouse and keyboard, where “the muscle memory” helps. However, many
actually considered MK as very unintuitive if they imagined never having used
it before, especially compared to pen and touch, or as one participant stated for
reordering: “Oh I did not like that! Why do I have to do all of this, why is it not as
simple as the pen”. Especially the back and forth between mouse and keyboard
when not using hotkeys was considered problematic, as well as the manual space
correction after deletion. Surprisingly, one participant even used the mouse to
strike-through text in the drawing view. MK was considered to be really precise,
and if one uses all the hotkeys also very fast due to the possibility to delete to
the right and left, whole words at a time or individual characters etc. Having
to manually correct spaces was however highlighted negatively, even though
they are used to that. Also placing the mouse first is considered an annoying
additional step. One participant put it like “depends on what you do, for small
changes precision is good, for whole words it is not so good”.

4.3.8 General Feedback & Feature Requests

In general, we received a lot of positive feedback in the final discussion about
the prototype, where participants stated that “I am going to buy this once you
are ready”, it would be “interesting”, “fascinating”, “respect for the prototype”
or that they “could imagine using future versions of it”. Multiple participants
reported that it would be nice to have multiple options to vary between the
modalities, so that one does not do the same thing all the time, which might
even improve concentration. It would also be great to “work with the hands”
from time to time, which would add an additional “fun factor”. Participants did
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not agree on which modality would in general be most suitable, some mostly
preferred speech, others pen, others argued it would be a question of getting
used to it. A nice overall conclusion by a participant was: “Anything I add I
would use speech, anything I delete I would use pen”.

Apart from standard features like translation memory, terminology management,
quality assurance, and concordance search, a participant requested the possibility
to visualize whitespaces. Furthermore, special language-dependent characters
(e.g., apostrophes) should be automatically corrected depending on the target
language (3 participants). Three participants found the integration of Linguee
as a dictionary and corpus “very cool”, and it has been argued twice that there
should also be the possibility to lookup multiple source words by marking them
on the source view. They also highlighted that further functionality supporting
them in researching terms would help. As Balashov (2020) nicely describes,
professional translators need to be highly specialized to a domain, but cannot
know every detail of it, e.g., they can be experts on medical equipment, but still
cannot be expected to know “the distinction between different types of intra-
aortic catheters”, for which good researching support would be beneficial. While
the spell check functionality was already considered a good start, it should be
further extended detect double words, incorrect punctuation, or grammar.

4.4 Discussion

This section discusses the main takeaways per modality.

4.4.1 Pen

According to ordering scores, subjective ratings, and comments, we see that
pen is among the best modalities for deletions and reordering. However, other
modalities are superior for insertions and replacements, where it was only seen
as suitable for short modifications, but to be avoided for more extended changes.
In terms of timings, P was also among the fastest for deletions and reorderings,
and among the slowest for insertions. What is interesting, however, is that P
was significantly faster than S and MM for replacements (by 6 and 7 seconds on
average) even though it was rated lower. Participants also commented very en-
thusiastically about pen reordering and deletions, as they would nicely resemble
manual copy-editing. The main concern for hand-writing was the need to think
about and to create space before actually writing.

4.4.2 Touch

According to subjective ratings, orderings and the participants’ comments after
the experiment, results for touch were similarly good for deletions and reorder-
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ings, but it was considered worse for insertions and replacements. Furthermore,
and as we expected due to its precision, pen was preferred to finger touch by most
participants. However, in terms of timings, the two did not differ significantly,
apart from replace operations (where pen was faster). Even for such replacements,
where touch was rated as the worst modality, it actually was (non-significantly)
faster than S and MM.

4.4.3 Speech & Multi-Modal Combinations

Speech and Multi-Modal PE were considered the worst and were also the slowest
modalities for reordering and deletions. For insertions and replacements, how-
ever, these two modalities were rated and ordered 2nd (after MK) and in particular
much better than P and T. Timing analysis agrees for insertions, being 2nd after
MK; for replacements, however, S and MM were the slowest even though the
ratings put them ahead of P and T. MM was slower than S for deletion, which can
be explained by the fact that our implementation did not support MM deletions
of multiple words in a single command which was the case in 2 out of 4 tested
sentences. Still, we would have expected a comparable speed of MM and S for
reordering tasks, as is the case for replacements. Insertions are the only operation
where MM was (non-significantly) faster than S, since the position did not have to
be verbally specified. Furthermore, the participants’ comments highlighted their
concern regarding formulating commands while already mentally processing
text. Still, S and MM were considered especially interesting the more text should
be added. The main advantage of the multi-modal approach as argued by the
participants of our study was that one has to speak less, albeit at the cost of doing
two things at once.

4.4.4 Mouse & Keyboard

Mouse & keyboard received the best scores for insertions and replacements,
where it was the fastest modality. Furthermore, it got good ratings for deletions
and reorderings, where it was also fast but not the fastest for reordering. However,
some participants commented negatively, being “unintuitive” especially for the
reordering task, and stating that it only works well because of “years of expertise”.
As can be seen in the timing analysis, MK is still by far the quickest when text
needs to be produced (insertion and replacement), and comparably fast to P, T,
and S for deletions. For reordering, however, it was slower than P and T. One
should note that insertion tasks in this PE study require the insertion of a single
or a few words within a sentence; for dictating whole sentences or long phrases,
speech might well be faster than typing.
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4.4.5 General

Overall, many participants provided very positive feedback on this first proto-
type combining pen, touch, speech, and multi-modal combinations for PE MT,
encouraging us to continue. They especially highlighted that it was nice to have
the option to switch between modalities. Furthermore, several promising ideas
for improving the prototype were proposed, e.g., to visualize whitespaces.

The focus of our study was to explore the implemented interactions in detail,
i.e., each modality for each operation irrespective of frequency. The chosen
methodology guaranteed that we receive comparable feedback on all interactions
from professional translators by having them correct the same mistakes using
different modalities. Nevertheless, a more realistic “natural” workflow follow-up
study should be conducted in the future, which will also show if participants
swap modalities within sentences depending on the error type, or if they stick to
single modalities to avoid frequent modality switches.

Interestingly, our findings are not entirely in line with translators’ intuitions
reported in our previous elicitation study: While touch worked much better than
expected, handwriting of whole subphrases worked worse than they thought.
Additionally, it is interesting to note that some newly introduced modalities
could compete with mouse & keyboard even though participants are biased by
years of training with the latter.

4.5 Conclusion

Based on an initial elicitation study, this chapter proposed and evaluated MMPE,
a CAT prototype combining pen, touch, speech, and multi-modal interaction
together with common mouse and keyboard input possibilities for PE. Users can
directly cross out or hand-write new text, drag and drop words for reordering, or
use spoken commands to update the text in place. Our study with professional
translators shows a high level of interest and enthusiasm for using these new
modalities. For deletions and reorderings, pen and touch both received high
subjective ratings, with pen being even better than mouse & keyboard. In terms of
timings, they were also among the fastest for these two operations. For insertions
and replacements, speech and multi-modal interaction were considered suitable;
however, mouse & keyboard were still favored and faster here.

For the goal of this part of the thesis investigating modalities other than mouse
and keyboard in the PE process, chapter 4 plays a crucial role by developing
a working interface based on the elicitation studies’ findings (chapter 3) and
evaluating it with professional translators. MMPE combines the most modalities
simulatenously explored in the CAT and PE literature, and the well-structured
study allows us to gain an understanding of the usefulness of different modalities
for different PE tasks. Furthermore, various suggestions for improvement have
been outlined, which will be addressed in the next chapter.
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Chapter 5
Improvements and Further Studies

with MMPE

In this chapter, we leverage the qualitative feedback from the previous study to
extend and improve the MMPE CAT environment through a variety of layout
changes, enhanced interaction flexibility, and others, as discussed below. We also
present first steps on including eye tracking combined with speech or keyboard
input as an additional interaction modality. Finally, we summarize two addi-
tional studies conducted with MMPE, namely our investigations of mid-air hand
gestures in combination with the keyboard for PE of MT, and the exploration of
word-level QE within the PE process.

This chapter is based on publications Herbig et al. (2020d), Jamara et al. (2021),
and Shenoy et al. (2021).

5.1 Improvements to Overall Layout

We decided to stick with the enlarged visualization of the current segment, as
participants in our study liked the large font size. However, the original prototype
had the two target views (handwriting and default editing) next to each other.
Thus, overall, our system included three neighboring views. This was perceived
as unintuitive, leading to much confusion, especially at the beginning of the
experiment, when participants did not remember which target view supported
which features. Therefore, we combined the two target views into one with tabs,
clearly labeled which mode does what, and allow quickly switching between
them. The new combination has the additional advantages that the interface
becomes symmetric (as there is only one source and target for the previous, the
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current, and the remaining segments). Furthermore, the space for hand-writing
increases even further, and the layout on smaller displays with insufficient space
to nicely visualize three text boxes next to each other is improved. Undo and
redo functionality and segment confirmation are also implemented: as before (1)
by using hotkeys, or (2) through buttons between source and target, but now also
(3) through speech commands. Next to the buttons for undo and redo we added
a button for touch deletion, which we will discuss below.

Figure 5.1: Screenshot of the improved MMPE interface.

A feature that we newly introduced because it was requested in the study was
the visualization of whitespaces, which can also be enabled in the navigation bar.
Figure 5.2 shows the visualized spaces and line breaks, commonly known from
Microsoft Word.

Figure 5.2: Visualization of whitespaces in MMPE.

5.2 Improvements to Handwriting

The handwriting recognition using the MyScript Interactive Ink SDK worked
well in the study. Most participants preferred the pen to finger handwriting for
insertions and replacements due to its precision, although some considered it less
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direct than finger input. One participant even used the strike-through deletion
with the mouse; therefore, we decided to keep all three handwriting options.

However, handwriting for replacements and insertions was considered to work
well only for short modifications. An issue that might have influenced this
finding was that in the evaluated version of MMPE, an unintended change of
the currently selected segment happened when the palm of the hand touched
another piece of text. As it is common to lay down one’s hand while writing, we
now prevent this unintended segment change by ignoring palm touches.

Furthermore, participants found the gesture to create space (drawing a vertical
line) often hard to accomplish, which we improved by increasing the lineheight.
For the first line, we added even more space to the top, to prevent a drawing
from starting in the text box containing the recognized text, where it would be
ignored, thereby improving the user experience. Last, we deactivated the button
of the digital pen, as it frequently resulted in unintended right-clicks triggering
the context menu. Figure 5.3 shows the handwriting view with the additional
space through the interface layout change and the lineheight, as well as some
alternatives for recognized text.

Figure 5.3: Handwriting and alternatives after clicking the word “Schallplatten”
in the recognized text at the top.

5.3 Improvements to Touch Reordering and Deletion

Touch reordering was highlighted as particularly useful and received the highest
subjective scores and lowest time required for reordering. Nevertheless, the old
reorder only supported moving one word at a time, not whole sub-phrases or
parts of words, which is naturally needed in actual PE settings. Now, users have
two options: (1) they can drag and drop single words by starting a drag directly
on top of a word, or (2) they can double-tap to start a selection process, define
which part of the sentence should be selected (e.g., multiple words or a part of a
word, see Figure 5.4a), and then move it (see Figure 5.4b).

While this allows a much more flexible reorder functionality, it has the disadvan-
tage that double-tap can no longer be used to delete words, as was the case in the
previous prototype version. However, as strike-through in the handwriting view
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(a) Multi-word selection using touch. (b) Touch reorder.

Figure 5.4: Touch multi-word selection and reordering in MMPE.

was also highly liked for deletion, we think removing this functionality does not
harm overall usability. Furthermore, we added a delete button alongside the
undo/redo/confirm buttons so that users can still delete using touch by selecting
text through double-tap and pressing the button then. Overall we believe that
the increased flexibility should enhance usability, even though touch deletion of
single words became slightly more complicated.

Several participants in our study noted that the text was jumping around when
reordering a word from the end of a line: By immediately removing the picked-up
word from the text, all remaining words moved to the front, and the placeholder
element was taking up space that also pushed words from line to line while
dragging. We have now solved this issue by keeping the word(s) in the old
position in a struck-through appearance (see Figure 5.4b), showing a copy of the
word(s) below the finger/pen, and only removing the actual word(s) on drop.
Furthermore, the visualization was redesigned to make the drop position clearer
without taking up any space and highlighting the picked-up text better. As before,
spaces between words and punctuation marks are automatically fixed, and, for
German, nouns are automatically capitalized.

5.4 Improvements to the Speech Modality

According to the participants, speech would become especially compelling for
longer insertions and would be preferable when commands remain simple. How-
ever, it was considered problematic in shared offices and would be complex to
formulate commands while mentally processing text. To limit the complexity
of speech commands, we added further synonyms (e.g., “write” or “put” as al-
ternatives to “insert“) and allow users to specify anchors by occurrence (e.g.,
“delete last A”). Thus, we increase flexibility and offer more natural commands
that participants had used in our study in chapter 4, but which were not sup-
ported back then. Furthermore, we now allow modifying punctuation marks
(e.g., “delete comma after nevertheless”), automatically capitalize words inserted at
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the beginning, uncapitalize them when reordered to other positions, capitalize
the second word when deleting the first in the sentence, and so on. Users can
now also choose to restate the whole sentence when MT quality is low, and in
general, dictations are supported.

We also improved user feedback regarding speech commands: On the one hand,
invalid commands display why they are invalid below the transcription (e.g.,
“Cannot delete comma after nevertheless, as nevertheless does not exist”, or
“There are multiple occurrences of nevertheless, please specify further”). On
the other hand, it previously was hard to see if the speech module correctly
interpreted the requested change because the text was simply replaced. Thus,
the interface now temporarily highlights insertions in green, deletions in red (the
space at the position), and combinations of green and red for reordering and
replacements, where the color fades away 0.5s after the command. That way, the
user can quickly see if everything worked as expected, or if further corrective
commands are required, in which case a simple undo operation can be triggered
(e.g., by simply saying “undo”). The updated speech module including change
highlighting can be seen in Figure 5.5.

(a) Target before speech command. (b) Target after speech command with
change highlighting.

Figure 5.5: Speech commands with change highlighting in MMPE.

Other ideas we are currently working on include passing the text to the speech
recognition to improve transcription results by considering the context (similar
to the TransTalk project, Dymetman et al. (1994)) or training the automatic speech
recognition towards the user to improve the received transcription.

5.5 Improvements to Multi-Modal Combinations of Pen/-
Touch/Mouse with Speech

In the study in chapter 4, multi-modal interaction received good ratings for
insertions and replacements, but worse ratings for reorderings and deletions.
One big issue for deletions and reorderings was that multi-word (or partial word)
reorder/delete was not supported in the previous implementation; thus, the
translator had to place the cursor followed by a speech command multiple times.
Due to the possibility of touch selection of multiple (or partial) words, this is now
possible using multi-modal combinations of pen/touch/mouse combined with
simplified speech commands, thereby hopefully enhancing the user experience.
We further offer the possibility to keep the selection more straightforward, i.e.,
allowing the user to place the cursor at one position, but then state, e.g., “delete
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two words”. This should improve situations where speech-only commands
are particularly complex due to ambiguities, in which the combined approach
was highlighted as advantageous to the speech-only approach. Furthermore,
commands like “delete two words” based on a single cursor position are useful
for multi-modal combinations including eye tracking, as discussed below.

Naturally, all other improvements for the speech case discussed above like the
enhanced flexibility of commands, and especially the change highlighting also
work for the multi-modal case, thus, hopefully making multi-modal interaction
even more natural. An example image is shown in Figure 5.6.

(a) Target before multi-modal command.
(b) Target after multi-modal command with
change highlighting.

Figure 5.6: Multi-modal command of selection and speech in MMPE.

5.6 Introducing Eye Tracking for Multi-Modal Combina-
tions

In the study reported in chapter 4, insertions are the only operation where the
multi-modal approach was (non-significantly) faster than speech-only commands,
since the position did not have to be verbally specified. We therefore investigate
other approaches to enhance the multi-modal case: Apart from improving it by
supporting multi-word reorder/delete and simplifying the speech commands as
discussed above, we integrated an eye tracker. The idea is to simply fixate the
word to be replaced/deleted/reordered or the gap used for insertion, and state
the simplified speech command (e.g., “replace with A”/“delete”), instead of having
to manually place the cursor through touch/pen/mouse/keyboard. Apart from
possibly speeding up multi-modal interaction, this approach would also solve
the issue reported by several of our participants that one would have to “do two
things at once”, while keeping the advantage of having simple commands in
comparison to the speech-only approach.

In terms of hardware we now additionally integrated a remote eye tracker (the
Tobii 4C, ca. 200 Euro39), which is attached to the screen and calibrated to the
user with the eye tracking software provided. Other eye trackers could also be
integrated in a similar way. Figure 5.7 shows the setup including the eye tracker.

Upon activation in the Angular client’s navigation bar, a Python script is launched
for the communication with the eye tracker. This script retrieves the raw gaze
positions and pupil diameters of both eyes, further calculates fixations using a

39At the time of writing.
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Figure 5.7: Hardware setup with a large tiltable screen, a digital pen, mouse,
keyboard, a headset, and the newly integrated eye tracker (highlighted through
an arrow).

dispersion-based algorithm, and sends the data back to the browser. Figure 5.8
shows the recognized current gaze position with a red circle. Based on the
fixation, the client calculates the word belonging to the fixation and highlights
it (yellow rectangle), which can then be used for multi-modal commands. If
more than one word need to be changed, eye tracking naturally is sub-optimal at
marking a text range. We therefore extended the speech commands to support
the manipulation of multiple words, e.g., the user can look at the first word to be
deleted and say “remove three words”, or reorder multiple words by fixating the
first one and stating “move four words after X”.

Furthermore, we memorize and visualize (with a yellow circle) the last fixation
on the source and target views, thereby helping translators navigating through
the text not to get lost when switching their attention back and forth between
source and target. This approach is similar to Gazemarks (Kern et al., 2010),
which has shown its efficiency in visual search tasks with attention shifts. Apart
from combining eye tracking with speech commands, we also plan to combine it
with the keyboard, similar to the ReType approach (Sindhwani et al., 2019) but
adapted towards the PE domain.

5.7 Improvements to the Log Files

We also worked on improvements and extensions to the logging functional-
ity: Apart from bug fixes, we improved logs for copy and paste by adding the

143



Figure 5.8: Eye tracking: The red circle (that is partly hidden) shows the current
gaze position. The yellow circle on the left is the memorized last fixation on the
source side. The highlighted word “die” shows the word that this fixation was
mapped to. Applying multi-modal speech commands will take this marked word
as input.

clipboard content, better distinguished between delete followed by an insert
in comparison to replace operations, improved logs for reordering (better dis-
tinction into reorder-single, reorder-group, and reorder-partial), and provided
more understandable logs for undo/redo. Furthermore, we improved logging
for multi-modal commands: We do not merely save whether the interaction
was multi-modal, but store whether it was a combination of speech and pen, or
speech and mouse, or speech and finger touch. Last, we extended the logging
functionality by adding gaze positions, fixations, and especially pupil diameter,
which can be used for cognitive load analyses (see chapter 7). Figure 5.9 shows
an extraction of a log file, to showcase the level of granularity of the high-level
log, which simplifies subsequent analysis.

Figure 5.9: Logging of text manipulations in an easily interpretable granularity.
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5.8 Mid-Air Hand Gestures for Post-Editing

Apart from integrating eye tracking, we further conducted detailed analyses on
the use of mid-air hand gestures for PE. For this, we (i) investigate which mid-air
gestures combined with the keyboard (GK) are suitable for which text-editing
operations in PE, (ii) build a prototype supporting PE using GK, and (iii) analyze
editing times and subjective feedback on mid-air hand gestures compared to
mouse and keyboard (MK) for specific PE operations40. This section is a summary
of publication Jamara et al. (2021), to which we refer the interested reader for
further details.

5.8.1 Gesture Elicitation Study

While gestures on their own are naturally not a good modality for text input (as
also stated by the participants of our elicitation study, see chapter 3), the use of
gestures in combination with the keyboard might be a suitable alternative to the
mouse. To investigate this, we started our research with a gesture elicitation study
with 14 professional translators, conducted online due to the Corona pandemic.
We analyzed the proposals of our participants for the referents delete (a single
word or a group of items), reorder (single and group), replace (single and group),
as well as insert, to define a suitable set of gestures for PE. Performing these
referents implicitly includes other operations, namely selecting a position, a word,
or a group of words/characters.

While analyzing the data, consistent patterns emerged: Similar to the way the
mouse is used, participants performed all referents by first selecting the text, then
performing the editing operations, e.g., deleting. Consequently, we decided in
our analysis to separate the selection gestures from the editing operation gestures,
analyzing and discussing each separately. In addition, the proposed selection
gestures are divided into two types: the selection of a single item and the selection
of a group of items.

Among the 8 unique gestures proposed for group selection, two were the most
common: both indices (pointing with index fingers and moving them apart to
select: see Figure 5.10a) and index + thumb (pointing with pinched index finger
and thumb and separating them to select a range). Index + thumb and both indices
appear to also be preferred in selecting a single item. In addition, the gesture
pointing (where a participant points with the index finger to place the cursor on
the item) was often proposed for single item selection.

For the deletion referents, three gestures were suggested most often among the
participants. Those were: move right index down (Figure 5.10b), move right index
up, and move the right hand up (Figure 5.10c). Moving the right hand up to delete
was also common for the replace referents. Analyzing participants’ thoughts,
which were captured via think-aloud protocol, it appears that they wanted to

40Both studies have been approved by the university’s ethical review board.
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delete first and then type the replacement item. Another common proposal for
replacement was to simply type after selecting a text.

The reordering referents received three distinct gestures: The first one was to
select and move the text with both hands by moving them simultaneously (Fig-
ure 5.10d). The second gesture was to point with the right index finger and start
moving it to move the text immediately after selecting. The third gesture was to
grab with the right hand and move the hand to reorder the text, then open it to
release (Figure 5.10e).

Finally, the insertion referent received five unique gestures. One of the proposals
was to point with the right index finger and then move it to place the cursor in
the required place. Once the cursor was placed in the target position, the user
would switch to the keyboard for typing.

(a) Selecting a group of
text items by distancing
the index fingers.

(b) Deletion by moving
the right index finger
down.

(c) Deletion by moving
the right hand up.

(d) Reordering by moving
both hands simultaneously.

(e) Reordering by grab-
bing, moving, and re-
leasing.

Figure 5.10: Common hand gestures for PE tasks proposed in our gesture elicita-
tion study.

Together, these findings constitute a gesture set for text editing. Our separation
into selection (for single items and groups) and editing operations makes the PE
tasks more consistent and better represents our participants’ mindsets. What is
interesting is that selection of single items achieved high agreement by simply
placing the cursor on the item, without selecting it from start to end as with the
mouse. The deletion and replacement referents shared some gesture proposals
because participants often wanted to replace by deletion followed by typing.

5.8.2 Prototype

We used the elicitation study results to define our final gesture set and implement
a prototype. For this, the frequently proposed gestures were explored in terms of
implementation feasibility. If two gestures were conflicting, we dropped the less
popular one; otherwise we slightly modified it to resolve the conflict.
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For group selection, we found that the proposed index + thumb gesture practically
fails upon selection across multiple lines; thus, we dropped it. In contrast, using
both indices can perform this kind of selection, so we implemented it as depicted
in Figure 5.11. Note that in contrast to the mouse, the group selection using both
index fingers allows the user to manipulate both ends of the selection continu-
ously instead of having one side fixed. For single item/position selection, we
implemented pointing with the right index finger. For multi-line text, both single
and group selection allow moving the index finger vertically and horizontally.

Figure 5.11: Mid-air gesture-based group selection by pointing with both indices.

For deletion, we implemented hand or finger movement down and up to to support
all often proposed gestures (Figure 5.12). Note that for single item deletion it
is sufficient if the cursor is placed somewhere on the word; there is no need to
define the start and end of the word through a group selection.

Figure 5.12: Mid-air gesture-based deletion by moving the right hand or finger
up or down.

Replacement can be achieved by either performing a group selection and typing
directly, or by selecting a single item or group of items, deleting, and then typing.
Note that single item replacement can thus also be achieved without performing
a group selection.
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The most complicated gestures were proposed for reordering; the gestures are a
compound of several sub-gestures. Since reordering using the right index conflicts
with cursor movement, we dropped it. Moving both hands while in the selection
position turned out to be difficult to perform, as maintaining the same distance
between the hands at all times is challenging. Therefore, we decided to merge it
with the grab proposal; thus, after selection, a grab with the left hand indicates
the start of the reordering process. Then moving both hands or just the right
index finger reorders the text (Figure 5.13). Once the required position is reached,
closing the right hand ends the reordering process and drops the text in the target
position. For single item reordering, it is again sufficient to place the cursor on
the item without selecting the whole text.

Figure 5.13: Mid-air gesture-based reordering by selecting, left grab, pointing
with the right index finger to the target position, and right grab.

Our gesture detection relies on the Leap Motion Controller41, which is small in
size (8cm * 3cm) and can be placed on the top of the keyboard (Figure 5.13). The
device provides frames of detected hands with 3D positions of finger joints, as
well as some basic detection such as whether the fingers are extended or not.
Based on this information our gesture detection algorithm determines if one
of the above gestures is being performed. If only the right hand is detected
with the index fingers extended, then the cursor gets updated based on hand
movement. Moving both index fingers selects the corresponding text in the
interface (Figure 5.11). When a deletion gesture is detected, the selected text
(for group selection), or the word that the cursor is currently positioned on, is
removed (Figure 5.12). A grab with the left hand puts the currently selected
text/word containing the cursor in a reordering visualization. Then, movements
of the right index are tracked and move the highlighted text as well as an arrow
indicator visualizing the currently calculated drop position. Releasing the grab
then places the text back into the input field at the indicated position (Figure 5.13).
To avoid unintended gestures while moving the hands back to the keyboard, the
user can form a grab in both hands after executing a gesture. Since people move
their hands at different speeds, we further added sensitivity settings for gestures,

41https://www.ultraleap.com/product/leap-motion-controller/
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similar to the standard mouse settings. A video showing the interactions in
practice can be found under: https://youtu.be/qIRYeojkFVc. Note that
the prototype facilitates all editing types required for PE.

5.8.3 Prototype Evaluation

To evaluate our implementation in practice, we conducted another study similar
to the evaluation of the main prototype (see chapter 4), that tested every editing
operation in isolation against the traditional mouse and keyboard approach. Un-
fortunately, due to the pandemic, we could only run a small scale study with 8
participants from our DFKI research department, instead of consulting profes-
sional translators. To mitigate the difference between non-translation professional
subjects (computer scientists) and translation professionals, we ensured that sim-
ilar to professional translators, (i) all our participants have academic training
(computing degrees instead of translation degrees), (ii) that they are also highly
familiar with traditional mouse and keyboard interfaces and use them in their
day-to-day work, (iii) all subjects have relevant language proficiency (source EN,
target DE), and (iv) all work in a multilingual EN-DE environment. Furthermore,
as the evaluation required participants only to perform pre-specified text editing
operations in the two conditions gesture and keyboard (GK) as well as mouse
and keyboard (MK), without involving any linguistic translation decisions, we
hope to minimize the effect of not having translators as participants.

Qualitative data was collected by the semi-structured interviews and 7-point
Likert rating scales (7 = “strongly agree”) as to whether the gesture is (a) a good
match for its intended purpose, (b) easy to perform, and (c) a good alternative to
MK. Figure 5.14 shows that operations manipulating single items were generally
rated higher than operations on groups of items. Deletion of a single item was
rated best, especially in terms of goodness and ease of use. The majority of our
participants commented that group selection was hard to perform, whereas the
editing operations themselves were considered easy. While comments differed
depending on the referent, most of them were positive, and we frequently got
statements such as “it is great, [GK] felt like the same level of MK”.

Quantitative data, shown in Figure 5.15, captured the editing duration of both
GK and MK for each referent, showing that the GK interquartile range was higher
than the standard mouse and keyboard, except for group reordering. However,
the most interesting finding was that, although the participants had years of
experience using mouse and keyboard and were new to gestures, the average
editing time in the gesture condition was very close to the average in the mouse
condition in 4 out of 7 referents. Similar to what we found in the qualitative
analysis, gestures operating on single items were more efficient than group
operations in the GK condition. Single item deletion was the fastest, followed
by single item replacement and insertion. On the other hand, group operations
turned out to be the most time-consuming in both conditions, with the biggest
differences between conditions for group deletion and group replacement.
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Figure 5.14: Subjective ratings in the gesture prototype evaluation for the refer-
ents insertion (Ins) single and group replacement (RPs, RPg), single and group
deletion (Ds, Dg), and single and group reordering (ROs, ROg).

Figure 5.15: Editing duration of “gestures and keyboard”/“mouse and keyboard”
in the gesture prototype evaluation for the referents insertion (Ins) single and
group replacement (RPs, RPg), single and group deletion (Ds, Dg), and single
and group reordering (ROs, ROg).

5.8.4 Conclusion

The findings overall suggest that GK could be a suitable interaction modality
for PE and thus merits further research: Even though participants had years
of experience with MK, our quantitative analysis of editing time showed that
GK was only slightly slower for most operations, especially when manipulating
single items. Similarly, qualitative data shows that manipulating single items
was rated higher than operations working on groups of items, as participants
found the group selection gesture “cumbersome” to perform, especially when
selecting across multiple lines. This finding indicates that further effort should be
invested in improving group operations, which are also common in PE (e.g. by
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exploring if a different placement of the detection device could increase detection
accuracy). However, the appealing results on single item operations and the
satisfactory results on group operations bode well and could provide benefit
to the PE process as a complement, not replacement, to traditional mouse- and
keyboard-based editing, which warrants further exploration with professional
translators in a realistic PE scenario.

5.9 Guiding Post-Editors through Quality Estimation

Word-level QE assigns a quality label to each word or gap in a sentence (without
access to a reference) and can thereby guide the post-editor to potentially erro-
neous parts of the sentence as well as good subphrases that can be recombined
or adapted. However, the quality of QE systems is crucial, as incorrect QE might
lead to translators missing errors or wasting time on already correct MT output.
While word-level QE research has considerably advanced, achieving accurate
automatic word-level QE remains very hard: even the best models currently
only achieve F1 scores in the range 60% to 63% (Lee, 2020; Specia et al., 2020)
depending on the text domain and the underlying MT system used to generate
the data. With the few exceptions discussed in section 2.3.1, existing studies
usually focus on detailed technical analyses on the test data, without user studies
to investigate (i) if the quality levels achieved by the QE systems are already
useful for human PE, and if not, what quality levels are required, and (ii), how to
best present word-level QE information to translators. We address these research
questions in terms of a well-controlled experiment with professional translators
who are presented with (real and simulated) word-level QE output of varying
quality in two different visualization schemes. This section is a summary of
publication Shenoy et al. (2021).

5.9.1 Concept and Implementation

To ascertain which quality level would be sufficient to start helping the PE process,
we artificially generate data at quality levels higher than what can be achieved
by current state-of-the-art word-level QE models. The process of simulating QE
output, as well as integrating their visualization into a translation environment,
is explained in the following sections.

Artificial Generation of QE Output

We are not able to predict what exactly the output of a word-level QE model
achieving 95% F1 would look like, i.e., which kinds of MT errors the model could
detect well and which might be classified wrongly. The best we can do is to
assume that a higher quality QE model would be similar to current QE models,
but gradually improving on all parts of the MT output where current models

151



fail. We therefore first conduct a pre-analysis to understand the kinds of errors
of a current QE model, which we then leverage to generate artificial QE output
of higher quality. For this, we flip labels of the ground truth annotations, while
taking into consideration the parts of speech (PoS) that current QE models are
more likely to classify incorrectly, instead of flipping labels fully randomly.

Our pre-analysis using the TextBlob library42 for PoS tagging and the “QEBrain”
model (Wang et al., 2018)43 for generate quality predictions reveals the probability
of each PoS and the corresponding conditional probability for being incorrect
(given as (P (PoS), P (error|PoS))): nouns are most often wrong (32%, 48%),
followed by prepositions (10.9%, 15.6%), pronouns (8.69%, 14.8%), determiners
(13.04%, 14.3%), conjunctions (7%, 13.9%), interjections (4.5%, 12.9%), verbs (28%,
9.6%), adjectives (4.34%, 7.9%) and adverbs (5%, 2.9%).

Using those values, we simulate the error behavior of QE models achieving a
certain quality level by flipping the ground truth QE label (OK or BAD) of the
words depending on the conditional probability of the corresponding PoS. We
use the following equation to determine the flip probability per PoS:

P (flip|PoS) = P (error|PoS) ∗ F1base
F1target

where P (error|PoS) is the conditional probability computed in the pre-analysis,
F1base is the F1 score of the real QE model used in the pre-analysis, and F1target
is the F1 quality score that we artificially generate. Since the error likelihood
of nouns is highest, this ensures that it is more likely to flip a noun’s label than
that of an adverb. To get confidence scores for simulated QE models, we simply
randomly sample values above 0.5 for ‘OK’ predictions, and values below 0.5 for
‘BAD’ predictions.

The limitations of our approach are that it assumes a constant error distribution,
in the sense that higher quality QE models would just make proportionally fewer
errors in each category, and that confidence scores are simply randomized. Of
course, this is debatable, but, given that we cannot know exactly what a higher
quality QE model would look like, we believe that this simple approach is a
reasonable starting point for our investigations.

Visualization of QE output

Apart from QE quality, the visualization of QE output might also impact whether
QE helps or hinders PE. We designed two alternatives, called Binary- and Gradient-
based visualization schemes, as shown in Figure 5.16. In the binary visualization,
quality is represented by simply coloring words in green and red depending on

42https://pypi.org/project/textblob/. Since PoS tagging accuracy is fairly high for
high-resource languages and general text domains, we expect limited impact of PoS errors.

43This QE model was chosen because it was the best performing system according to the
assessment carried out by Shterionov et al. (2019).
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the QE output based on a level threshold of 0.544. While this seems intuitive
and easy to understand, uncertainties of the QE model cannot be depicted in
the binary visualization. To tackle this, the gradient-based visualization directly
shows the floating point number output of the QE model in the interval [0....1]
by mapping the output to a color gradient ranging from red to green. Thus, the
darker the shade of green, the more correct the model estimates the word to be.
At the same time, this additional information about model uncertainties may
well be confusing or overwhelming for the human post-editors.

(a) Binary QE visualization. (b) Gradient-based QE visualization.

Figure 5.16: Binary and gradient-based QE visualization schemes.

We extend MMPE for QE by loading and visualizing the (real and simulated)
QE models’ quality predictions per word of the MT output from the project files
(Figure 5.17) and extending the logging functionality to capture the QE condition
and visualization scheme. When a user manually changes a word flagged by the
QE system, its color is changed to black because we assume post-edits done by
a user to be correct. Ideally, we could re-run the QE to obtain new scores for all
the unchanged parts of the segment after each edit. However, as our simulated
QE models rely on ground truth data, which we only have for the original MT
output without modification, this is not a possibility.

Figure 5.17: Screenshot of the interface after integrating QE information.

44The chosen threshold can trade off how sensitive the shown QE annotations are, so it can
potentially trade off editing time for correctness. Our approach of using 0.5 is simple and straight-
forward, also often used in logistic regression and similar classification by just showing the
tendency of the model; nevertheless future research should investigate different thresholds.
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5.9.2 Evaluation

Using our implementation, we conducted a user study to assess the quality
threshold when word-level QE starts facilitating and stops hindering the PE
process and to investigate which word-level QE visualization is preferred.

Method

Due to the ongoing pandemic, the evaluation was conducted online45 by 17
non color-blind translators working as freelancers on a platform called Upwork
Global Inc46. All participants fulfilled the requirement of having either C1 or C2
language proficiency in both English and German. After filling in a demograph-
ics questionnaire, participants received an explanation of all of the prototype’s
features and pointers regarding the execution of the main experiment in a four
minute introductory video47. After the video, translators had time to get accus-
tomed to MMPE with word-level QE before delving into the main experiment.

The main experiment was the central part of the study and entailed PE of 32 text
segments (8 text blocks of 4 segments each) with QE support. As text, we used
EN-DE text from the training set of the WMT 2020 QE shared task (Specia et al.,
2020) originating from Wikipedia, which relies on an up-to-date NMT model
from the fairseq toolkit (Ott et al., 2019).

The segments were labeled by either the real QE model or simulated QE output
with 75% F1, 85% F1 and 95% F1 quality levels created as described above. The
real QE model proposed by Wang et al. (2018) was pre-trained on the training
set of WMT 2018’s QE shared task and fine-tuned on the Wikipedia domain,
achieving a quality level of 63.5% F1 on the training set48 of WMT 2020’s QE
shared task. QE information for each sentence was visualized either with the
binary or gradient-based visualization. Since there are four quality levels and
two visualization schemes, the experiment follows an 8*8 Balanced Latin Square:
the text order is kept identical for each participant, but the QE quality and vi-
sualization are counter-balanced accordingly on the 8 text blocks of 4 sentences
each. Thus, participants might be more exhausted for the same sentences to-
wards the end of the experiment and better concentrated on the initial sentences;
however, the effects of text and tiredness should cancel out for quality level
and visualization due to the counter-balancing. This methodology allows us to
analyze if visualization-x with QE-y is better than visualization-x’ with QE-y’
across text blocks. Moreover, the impact of translation skill or technical skill of
first-time users of MMPE factors into all the conditions equally due to the chosen
within-subject design.

45The study has been approved by the university’s ethical review board.
46https://www.upwork.com/
47https://youtu.be/6LgUzia_3pM
48Note that the model was not trained on this data.
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After post-editing each segment, participants had to press confirm, which we
used to record the required time. When confirming, we also showed a pop-up
asking “Was the word-level quality estimation helpful?” which the participant
had to rate on a 9-point Likert scale ranging from 1 (“very strongly disagree”) to
9 (“very strongly agree”). Apart from duration and subjective ratings, we measure
per condition edits done and the final quality of the translations in terms of TER
(Snover et al., 2006) by comparing the post-edited version of the translation to
the reference. Overall, the study took approximately one hour per participant.

Results

We present our results in 4 categories: (1) subjectively assessed helpfulness per
QE quality, (2) preferred visualization, (3) editing duration per QE quality, and
(4) translation quality per QE quality.

Subjective Helpfulness of QE Quality We analyze subjective ratings across
all segments with the same word-level QE quality level. To ensure independence
of samples, we average the ratings for the same QE quality level per participant.
As shown in Figure 5.18, the lower QE quality levels of 63.5% F1 and 75% F1
are consistently rated as less helpful (mean values of 1.5/3.25), while the higher
quality levels of 85% F1 and 95% F1 are rated more helpful (mean values of 7/8).
This indicates that in comparison to high quality QE, bad QE is not considered
helpful. Two-tailed t-tests, testing each group against 5, which is the middle
value along the subjective rating scale depicting neutrality, support this finding.

Figure 5.18: Subjective ratings per QE quality level.

Preferred Visualization per QE Quality To analyze preference of visualization,
we use the same ratings49, however, we multiply the ratings corresponding to
sentences shown in binary visualization by−1 and normalize the obtained scores
to the range [0...1]. Therefore, values close to 0 indicate a preference for the

49Independence of samples is achieved by averaging ratings per participant across segments
with the same QE quality and visualization.
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binary visualization scheme, while values close to 1 indicate a preference for
the gradient-based visualization. The corresponding box-plot in Figure 5.19
shows that for word-level QE quality levels 63.5% F1 and 75% F1 binary is the
preferred visualization scheme (preference value below 0.5). In contrast, for
higher quality levels of 85% F1 and 95% F1, the gradient-based visualization
is preferred (preference value above 0.5). Again, two-tailed t-tests against the
middle value (0.5) representing equal preference towards both visualizations
confirms this finding statistically.

Figure 5.19: Visualization preference per QE quality level.

Editing Duration per QE Quality Apart from subjective ratings (used for QE
helpfulness and visualization preference), we also capture the time taken to post-
edit the segments per QE quality. We average the duration across the segments
having the same QE quality per participant to make the observations independent.
The box plot in Figure 5.20 depicts that when the QE quality is low the duration
taken to post-edit the segments is high, whereas translators are fast when the QE
quality is high. To find out whether the differences in duration are significant, we
run a one-way ANOVA followed by Tukey HSD post-hoc test, showing that all
pairs except for 85% F1 vs. 95% F1 are significantly different.

Figure 5.20: Duration per QE quality level with Tukey HSD p-values.
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Translation Quality per QE Quality We have seen that translators subjectively
find high quality QE helpful and post-edit fast with it. In order to analyze whether
they are fast just because they blindly trust and follow the QE system (even when
they should not) or because the system actually helps, we evaluate the quality of
the resulting translations. As before, the scores were averaged across segments
having the same QE model per participant to make the observations independent.
The box plot in Figure 5.21 shows that the TER of the post-edited version against
the reference is low when the QE quality is high, and by contrast, it is high when
the QE quality is low. Since a low TER score implies a high quality translation,
translations get better with increasing QE quality.

We speculate that the reason for the high TER score for the 63.5% F1 QE model
is that the translators produced a different translation than the reference. This
different translation may or may not be accurate; we cannot know for sure
without manual evaluation. Nonetheless, from our automatic quality evaluation
we are certain that with better QE the final translations get closer to the reference.
In order to find out whether the differences are significant, we again run a one-
way ANOVA followed by Tukey HSD test showing that indeed all pairs are
significantly different.

Figure 5.21: TER scores per QE quality level with Tukey HSD p-values.

5.9.3 Conclusion

Our results show that existing state-of-the-art word-level QE systems are not yet
good enough to be helpful during PE. Instead, all our analyses agree that QE
systems need an F1 score of at least 80% to support PE in terms of subjective
helpfulness, editing duration, and quality of the final translations. This estab-
lishes a target for future QE research. In terms of visualization, the word-level
quality scores should be visualized using gradient-based visualization which
also shows uncertainties of the model, since the binary approach was considered
superior only in cases where QE was not helpful. This preference is interesting as
the exact color chosen for the gradient was randomly sampled in the red/green
range for BAD/OK ratings for the artificial QE output. A reason for preferring
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the gradient-based visualization could be a stronger involvement in the decision
process. With increasing QE quality, PE becomes more efficient, where in particu-
lar the higher quality levels of 85% and 95% require less editing time than the
lower quality levels. Lastly, we found that translation speed gains are not merely
a result of blindly trusting the QE system, but indeed help producing translations
that are closer to the reference. To sum up, a QE quality level of at least 80% F1
sets the approximate boundary where word-level QE starts helping translators,
and for these QE quality levels, a gradient-based visualization is preferred.

5.10 Conclusion

In this chapter, we first used the previously presented feedback from professional
translators to improve and extend the existing prototype: we redesigned the
layout, added visualization of whitespaces, fixed issues in hand-writing, allowed
multi-word reordering using touch drag and drop and improved its visualiza-
tion, extended the speech commands, provided better feedback for the user on
what the speech commands changed, and improved the logging functionality.
Furthermore, we showcased how eye tracking can be integrated, not only for
logging but as an actual interaction modality that can be used in combination
with speech recognition or the keyboard to quickly correct errors. Guided by
another elicitation study, we also integrated mid-air hand gestures that can be
used in combination with the keyboard for PE, which turned out much more
promising than initially expected in our study. Finally, we extended MMPE to
visualize word-level QE predictions and conducted a study that showed that
current state-of-the-art QE models are not yet good enough to support the PE
process; instead, quality levels of at least 80% F1 must be reached, and for these
quality levels a gradient-based QE visualization is preferred. The MMPE CAT
tool is now available open source on Github50.

The next obvious steps would be running follow-up studies, as we will discuss
in chapter 14. Implementation-wise, to transform MMPE into a fully fledged
translation workbench, further project management functionality, direct loading
of common file types like .docx, and support for more language pairs are required.

This chapter ends our investigations regarding the goal of investigating modal-
ities other than mouse and keyboard in the PE process. We have seen that, as
hypothesized, different modalities perform well for different PE tasks and could
indeed benefit the PE process according to our studies. MMPE combines the
most modalities simulatenously explored in the CAT and PE literature and is
now available to the public. In fact, we have already used MMPE in follow-up
research, e.g., on interactive PE (Akmal, 2021) and for exploring whether seeing
more than one MT proposal per segment is beneficial for PE (Wang, 2021), but
exclude these investigations from the scope of this dissertation.

50https://github.com/NicoHerbig/MMPE
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Part III

Multi-Modal Cognitive Load
Estimation

Now that we have discussed how explicit multi-modal user input
can support PE, we move on and explore if and how implicit multi-
modal input in the form of sensory devices can be used to model the
user state, in particular the perceived CL. We first discuss the vision
of cognition-aware CAT tools and present findings from interviews
conducted with professional translators to understand user expecta-
tions, in particular which kind of CL-based dynamic adaptations they
imagine to be useful (chapter 6).

Afterwards, chapter 7 presents a multi-modal framework we devel-
oped, that combines a large variety of sensors from the literature
(Demberg and Sayeed, 2016; Rowe et al., 1998; Stuyven et al., 2000;
Villarejo et al., 2012) to estimate and analyze CL. With it, we ran three
studies (chapter 8): First, a study with translation students who PE
segments in a realistic environment while being monitored by the
first version of our framework. Then two studies with the complete
framework: The first one almost identical to the study with transla-
tion students but this time with professional translators. The second
within the e-learning domain, to explore if our measures also work
well in other areas than PE, where learning was a reasonable choice
because CL theory originates from educational psychology.

Finally, chapter 9 presents results of a survey to understand if users
are more concerned about the use of some types of sensors then about
other types for estimating CL, and in particular, to figure out how big
the improvements achieved through cognition-awareness need to be
for users to consider sharing their data for this purpose.

Part III is based on publications Herbig et al. (2019c), Herbig et al.
(2021), Herbig et al. (2020a), and Herbig et al. (2019d).
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Chapter 6
Cognitive Load Adaptations

This chapter starts with a discussion why and how CL should be considered in
the PE process. Then, we present translators’ thoughts regarding adapting the
translation user interface to measured CL based on interviews conducted as a
side-investigation to the study presented in chapter 3.

This chapter is based on publications Herbig et al. (2019a) and Herbig et al.
(2019c).

6.1 Rethinking the Post-Editing Process from a Cognitive
Load Perspective

While it is widely acknowledged that MT can, in many situations, not be im-
mediately used as is but requires further PE, the cognitive dimension of PE is
often overlooked. This leads to a neglect of PE costs related to the way in which
post-editors work with MT output, and instead to a focus on creating MT output
that is as close as possible to an independently provided reference translation.
Especially the PE task, however, has the potential of inducing high CL on the
translator: It involves continuous scanning of texts, including source, the incre-
mentally evolving final translation output and possibly error-prone MT output
for mistakes, (sub-) strings that can be reused, text that has been translated, text
that still needs to be translated, etc. When PE is required, we should therefore
optimize for a low perceived CL during PE, and not only focus on MT quality in
terms of automatic measures or time to post-edit. While CL and MT quality are
interrelated, they cannot be considered equal, a simplification often made in the
translation domain. As an example, a long translation with a lot of string overlap
with a reference may obtain a high automatic or even subjective evaluation score,
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but turn out to be difficult to PE and therefore cause high CL. Another difference
is that CL may vary with individual post-editor, and this may even to some
extent be independent from MT quality (e.g., the number of repeated mistakes
that have been corrected in the past may impact perceived CL, while the quality
remains the same). Due to such examples, it has been argued that CL is a more
decisive indicator of the overall effort expended by post-editors (Vieira, 2016).

Apart from CL, other proposals to measure the usefulness of MT for PE were
made, e.g., recording PE time and effort (Guerberof, 2009; Zampieri and Vela,
2014b), quantifying in seconds and keystroke logs the difference between MT
output and a human-acceptable translation. We argue that it is not only the
amount of PE necessary or the PE time that should be considered, but the actual
CL perceived by the post-editor. Here, we see CL as “a variable that attempts
to quantify the extent of demands placed by a task on the mental resources we
have at our disposal to process information” (Chen et al., 2016). To frame it
within the model of PE effort by Krings (2001), who divided effort into temporal,
cognitive, and technical aspects, we propose to focus on the cognitive PE effort.
In contrast to almost all related research in the translation domain, we focus on
CL as defined in psychology, where it has been well researched and is based
on the assumption of a limited available working memory on which load is
imposed during cognitive tasks (Chen et al., 2016; Paas et al., 2003; Paas and
Van Merriënboer, 1994; Sweller, 1988). A key finding is that it is important to
avoid too high or too low CL to keep subjects motivated and to reduce stress,
exhaustion and fatigue. It is also important to note that CL significantly differs
from performance, since humans have the ability to temporarily increase their
effort in order to keep performance high when a task becomes more demanding;
this, however, comes at the cost of additional strain (Hockey, 1997).

Such factors like stress and fatigue are currently not considered in MT quality
measures but can influence the outcome and cost of PE in terms of required time
or occurring errors. Being able to robustly measure CL during PE would enable
CAT tools to intervene when high loads are detected, e.g., by suggesting breaks,
or providing alternative translations, thereby avoiding overload of post-editors.
The automatic capture of CL without interfering in the PE process would also
enable the creation of large datasets of CL scores for (source, MT, PE) tuples, that
could be used to optimize MT systems to produce output inducing lower CL.

6.2 Method

To gain insights from professional translators regarding this vision we conducted
semi-structured interviews. The goal was to understand (1) if users have interest-
ing ideas on how CL measurements could be used within the context of PE, and
(2) which proposed adaptations to CL they would find useful. For this, partici-
pants are asked to suggest ideas themselves, and we discuss possibly interesting
adaptations, which are rated on a simple 7-point scale ranging from “very bad” to
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“very good”. Overall 13 (female=9, male=4) translators aged 28 to 62 participated.
Since these interviews were conducted with the same translators as our elicitation
study, further details on the demographics can be found in section 3.2.1.

6.3 Results

We present the results of our interviews by clustering the opinions regarding the
different adaptation ideas.

Providing Additional Resources The idea to automatically receive additional
resources when high loads are detected was often proposed by participants,
e.g., to display a corpus or terminology proposals, to automatically provide MT
alternatives, or to trigger concordance search. We also discussed this idea with
participants who did not propose something related on their own. On average
a rating of 5.15 was achieved on a 7-point Likert scale (min=1, max=7, σ=1.68).
Overall, 10/13 participants were positive regarding such automatic adaptations
(ratings in range [5–7]) stating that especially TM and MT alternatives would
help, that research activities should be triggered automatically, and that this
could avoid wasting time. However, it was also noted that adaptations need to
be configurable, and that they risks showing irrelevant information.

Simplifying the Interface We also discussed the opposite idea: to hide ele-
ments when a high CL is detected, the hypothesis being that CAT interfaces are
too complex (Zaretskaya and Seghiri, 2018) and considering all information might
be overwhelming. Here, we see rather contrary opinions: only three participants
were very positive in this regard (range [6–7]), while all others were against such
simplifications or had a neutral opinion (rating in [1–4]). The average rating is
therefore rather low: mean=3.39, min=1, max=7, σ=1.94.

Estimating CL of New Text We further discussed the idea of learning a CL es-
timation, mapping high/low CL experienced in the past to new tasks to estimate
how demanding the translation will be. 9/13 participants provided very positive
feedback, stating that this “is better assessment than just words”, should be used
for color-coding, or could help estimate the time and effort required for new
jobs. 3 participants however showed mixed and 1 participant negative opinions
towards this idea. On average the ratings were rather good: mean=4.92, min=3,
max=7, σ=1.19.

Suggesting Breaks The idea to propose breaks automatically was also dis-
cussed: One translator proposed to display a coffee cup icon, while another
argued that choosing break times more carefully might help achieve better qual-
ity. In general the feelings were mixed, with an average rating of 4.23 (min=1,
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max=7, σ=2.05), and many participants stating that automatic break proposals
might help if they are configurable and only suggested but not enforced.

Reordering Segments Similarly, the idea arose to work on the texts/projects
in a changed order, to avoid long periods of too high or too low CL and achieve
a better balance. Of course, this would only be possible if the context allows
it, but the participants claimed that this is feasible and many already adapt
the order, e.g., by translating a table or a caption in between or by switching
to a simpler translation project. This would help with “making better use of
cognitive resources” because you are sometimes “blocked by focusing too much”.
However, apart from these many positive voices, four participants also stated
that they “can do it on [their] own” or “would not want that”. On average the
translators gave their idea a rating of 4.15 (min=1, max=6, σ=1.46).

Other Ideas Other interesting ideas proposed by the participants were to pay
translators based not only on time but also on CL, to adapt the font size, to make
a profile about what is easy for which translator to find a good match between
text and translator, or to estimate the remaining time based on complexity. Fur-
ther suggestions were notifications about detected boredom, or increasing error
tolerances for speech and handwriting recognition when under load.

In general, participants found potential adaptations to one’s own cognitive state
exciting and offering room for lots of improvement, but at the same time some
found it to be “frightening” and “feeling manipulative”.

6.4 Conclusion

PE is often considered merely from a productivity perspective and neglects
the cognitive dimension involved in the process. Furthermore, MT research
often ignores the fact that MT is often subsequently post-edited, and thus only
focuses on quality as a comparison to a ground truth translation and not in
terms of suitability for PE. We thus argued for the need to consider the cognitive
dimension more closely in PE environments. With this motivation in mind,
we interviewed professional translators to understand which CL adaptations
could offer benefit during PE, and found that they were especially positive
regarding the idea of a user interface that adapts to measured CL, particularly if
it automatically provides additional resources like TM matches or MT proposals.
We also received a vast amount of further ideas how CAT tools could adapt to
estimated CL, which motivates us to further explore this vision.

We next focus on creating a framework combining a variety of sensors to estimate
CL, and after that, present findings from 3 studies with the framework that
indicate which modalities work better or worse for CL estimation.
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This chapter thus formed the basis for our second research question: it motivated
why CL should be considered more closely in the PE process, provided initial
ideas how to adapt CAT tools to perceived CL, and finally discussed these ideas
with professional translators to capture their expert knowledge and gain a better
understanding of a possible CL-aware CAT environment.
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Chapter 7
Multi-Modal Cognitive Load

Estimation Framework

As stated in the beginning of Part III of this thesis, we believe that the CL per-
ceived by translators during PE should be considered more closely, since MT
output nowadays often requires PE and only considering the number of changes
needed may not be an accurate measure of the effort involved (Koponen, 2016).
By focusing on the CL during PE, we aim for improved motivation to work and
avoidance of boredom, exhaustion and stress. Adding this CL-based perspective
on PE of MT to the commonly used but arguably oversimplifying BLEU (Pap-
ineni et al., 2002) perspective on MT quality should lead to a better approximation
of actual PE cost.

Thus, we need a method to robustly measure CL in PE. The research literature
(see section 2.4) provides a lot of studies in other domains; however, the question
remains which of the related approaches are applicable here. Within the trans-
lation domain only a few of these approaches have been tested and the focus
was mostly not on CL but on perceived MT quality. To test which measuring
approaches can actually reflect different levels of CL in PE, we gather data from
a variety of sensors during PE, which can be combined in a multi-modal fashion.
As a ground truth, we use the subjective ratings of perceived CL per segment of
each individual post-editor to also capture inter-translator differences. A combi-
nation of a set of the gathered sensor data is then correlated to these subjective
ratings by regression analysis predicting the rating from the data. The goal is
to be able to automatically infer the CL from the raw sensor data during PE to
avoid interruptions by asking for these ratings. Ideally, this should work using
as few and as commonly used sensors as possible to prevent overhead and make
it more feasible in practice.
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This chapter is based on publications Herbig et al. (2020a), Herbig et al. (2021),
and Herbig et al. (2019c), and focuses on the data capturing framework for robust
CL estimation. The next chapter then uses this framework in three studies and
discusses the subsequent data analysis, including the regression analysis from
raw sensor values to subjective CL.

7.1 Architecture

To assess data from multiple modalities during PE, we implemented a framework
combining all data in a simple and effective manner. A node.js server, running on
the same machine as the PE is done on, retrieves data via web sockets and stores
it to a database. The system is event-based; thus, whenever a sensor acquires
data, it is sent as a JSON event to the server. To calculate higher-level features
(like heart rate variability) based on the raw data (like the RR intervals), it is also
possible to subscribe to specific events, process them, and send the resulting high-
level feature back to the server. Thus, scripts post-processing raw sensor data
effectively act as further high-level sensors themselves. A schematic overview of
the architecture is depicted in Figure 7.1.

Figure 7.1: The architecture of our CL estimation framework with all sensors
communicating with a central server in an event-based fashion51.

All sensors used are depicted in Figure 7.2. We ensured that all devices included
in our analysis do not significantly hinder the translation process or feel uncom-
fortable. This is also the reason why we did not include two-finger GSR sensors,
head-mounted eye trackers, or EEG sensors. Furthermore, we aimed for a com-
bination of rather cheap consumer-oriented devices (like the Polar heart belt)
and research-oriented devices (like the Empatica E4) to compare both classes.
We will now look at the individual subjective, performance, behavioral, and
physiological measures.

51Icons by Smashicons & Freepik from flaticon.com.
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Figure 7.2: Overview of sensors used for CL estimation52.

7.2 Subjective Measures

Subjective measures are based on the assumption that subjects can self-assess
and report their cognitive processes after performing a task. For this, we adapted
a CAT tool to show a pop-up asking for a subjective CL rating (SubjCL53) using
the scale proposed by Paas and Van Merriënboer (1994) after every single segment.
This scale was chosen because it focuses on CL and not on quality, has been widely
used and verified in many application areas, and further since it was used in the
two most related studies by Vieira (2014, 2016). Furthermore, it can be answered
quickly as it contains only a single question (in contrast to NASA-TLX, Hart
and Staveland (1988)), and allows ratings on a 9-point scale, thereby offering a
sufficiently wide range to select from. The single 9-point question is “In solving
or studying the preceding problem I invested” with a choice of answers ranging
from “very, very low mental effort” to “very, very high mental effort”.

7.3 Performance Measures: Time & Text

The usual performance measures based on the required time or achieved quality
are not as easily accessible in PE as in other cognitive tasks, since it is possible to
trade off quality for time and because translation quality is a partly subjective
measure. Nevertheless, we integrate the following simple time and text measures:

52Empatica image taken from https://i.pinimg.com/originals/04/82/54/
0482548efb5dfca4394c56610952800a.jpg.

53Here and in the following feature names used in the subsequent studies are defined.
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7.3.1 Time Measures

For the time features we integrate PE time (PeTime) and length-normalized PE
time which also considers the segment length (LNPeTime).

7.3.2 Text Measures

The text features consist of smoothed BLEU, HBLEU (Lin and Och, 2004),
TER, HTER (Snover et al., 2009), and sentence length (SL). Note that the
difference between the non-H- and H-based measures lies in the choice of the
reference translation and hypothesis: BLEU and TER take the MT output as
hypothesis and the independently provided human translation as reference and
calculate n-gram overlap (BLEU) or the amount of necessary edits (TER) to
transform the hypothesis into the reference, while HBLEU and HTER perform
the same calculations, but this time between the MT output and the post-edited
translation. Thus, the H-based measures can be applied to any post-edited text,
while the non-H measures only work in controlled experiments when a reference
translation is available.

7.4 Behavioral Measures: Typing, Facial Expressions, &
Body Posture

Behavioral measures can be extracted from user activity while performing a task.

7.4.1 Typing-Based Measures

Especially interesting in the context of PE, where traditionally the translator
does not move a lot, is focused on the screen, does not speak, etc., are mouse
and keyboard input-based features. Therefore, our most basic sensor is a key
logger storing all keyboard and mouse input during PE. The higher-level pause
features Average Pause Ratio (APR) (“the average time per pause in the segment
divided by the average time per word in the segment”) and Pause to Word Ratio
(PWR) (the number of pauses in a segment divided by the number of words in
a segment) by Lacruz et al. (2012; 2014), which were shown to correlate with PE
effort, are automatically calculated from the keyboard events.

7.4.2 Facial Expressions

A web-cam records images at a fixed interval which are then sent to the emotion
recognition API from Microsoft Cognitive Service54, returning a simple JSON

54https://azure.microsoft.com/services/cognitive-services
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format with the likelihood of each of the basic emotions based on a trained
neural network (EmotionName). While emotion recognition and CL estimation
cannot be considered equal, it seems reasonable to include it here as well.

7.4.3 Body Posture-Based Measures

Furthermore, the body posture is captured by a Microsoft Kinect v2. We hypothe-
size that post-editors come closer to the screen for hard-to-edit translations, so we
calculate the distance to the head and normalize it per participant (HeadDist).

7.5 Physiological Measures: Eyes, Heart, & Skin

As physiological measurements, we integrate eye-, heart-, and skin-based mea-
sures in our experiment.

7.5.1 Eye-Based Measures

For eye-based features, we use a web-cam and an eye tracker (see Figure 7.3).

Figure 7.3: A Logitech webcam and the Tobii 4C eye tracker for eye-based CL
measures.

The web-cam, which is naturally not as precise as the eye tracker but easily
accessible on most modern devices, is used to calculate the eye aspect ratio
(EAR), which indicates the openness of the lids (Soukupova and Cech, 2016).
Even though the work did not explore if EAR is a suitable indicator of CL, it
was included because intuitively a link might exist and the simplicity of using
web-cams would make the CL measurement easily applicable in practice.
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We further integrate the remote Tobii eye tracker 4C, since it is cheap, offers
high-quality data and can therefore be considered as a candidate for real-world
usage. Based on the recorded raw data, we calculate the amount of blinking
(of less than 2 s length) (BlinkAmount) and also normalize this by the PE time
(NormBlinkAmount) (Van Orden et al., 2001). Similarly, we calculate the amount
of fixations (FixAmount) and normalize it by PE time (NormFixAmount). We
further compute the fixation durations (FixDur) and saccade durations (SaccDur)
(Doherty et al., 2010; Moorkens et al., 2015), all of which have been shown to
be indicators of CL. Furthermore, we reimplemented the work by Goldberg
and Kotval (1999) to calculate the probability of visual search based on the eye
movements (SearchProb), which was proposed to determine whether a user is
searching within a user interface and could therefore also be an indication of a
user feeling “lost” while PE.

Note that we listed these features as physiological measures, even though eye
movement and blinks are to a large extent controllable and are therefore often
counted as behavioral features. However, we wanted to present and analyze all
eye features, including the non-controllable pupil diameter (see below), together,
and therefore list them as physiological measures.

To capture the pupil diameter (O’Brien, 2006a) (PupilDiameter), we use the same
eye tracker, however, with the Tobii Pro SDK. Even though this SDK is expensive
(ca. 2300 Euro55), making it harder to establish pupil measures in real-world
scenarios, we include the pupil diameter for comparison as it has been frequently
used in CL studies. For calculating higher level features on the sensor output,
we first replace blinks from the signal by linear interpolation. Then, the Index
of Cognitive Activity (ICA), which is the frequency of small rapid dilations of
the pupil (Demberg and Sayeed, 2016) that was shown to be more robust to
changes in illumination, is calculated based on this signal. Two approaches are
implemented: one uses a wavelet transformation to calculate the amount of rapid
dilations (ICAwave), while the other simply counts how often a sample deviates
by more than 5 times the rolling standard deviation from the rolling mean of the
signal (ICAcount). Last, we also implemented the work of Hossain and Yeasin
(2014), which checks for sharp changes and continuations of the ramp in the
Hilbert unwrapped phase of the pupil diameter signal (Hilbert).

7.5.2 Heart-Based Measures

For heart measures, we integrate three devices: a Polar H7 heart belt, a Garmin
Forerunner 935 sports watch, and the Empatica E4 wristband (see Figure 7.4).
That way, we have two sports devices (Polar and Garmin) and one CE certified
medical device (type 2a) offering an early glimpse of the data quality achieved by
future consumer devices. Furthermore, we can compare the wrist-worn devices
(Empatica and Garmin) to the chest-worn measurements by the Polar belt.

55At the time of writing.
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Figure 7.4: The Empatica E4, Polar H7 and Garmin Forerunner 935 for heart-based
CL measures56.

From both the Polar belt and the Garmin watch, we capture the heart rate (HR).

The Polar belt, as well as the Empatica wristband, further capture the RR interval
(RR), which is the length between two successive “R”s (basically the peaks) in
the ECG signal. Based on this, we calculate the often-used CL measures of heart
rate variability (HRV) (Rowe et al., 1998), in particular the root mean square of
successive RR interval differences (RMSSD) and the standard deviation of NN
intervals (SDNN). Here, the SDNN uses NN intervals, which normalize across
the RR intervals and thereby smooth abnormal values. Furthermore, we add
the HRV features NN50 and pNN50, which is the number and percentage of
successive NN intervals that differ by more than 50 ms (Shaffer and Ginsberg,
2017), for both the Empatica and the Polar to the analysis.

The Empatica further measures the blood volume pulse (BVP), which is the
change in volume of blood measured over time. Based on it, we calculate the BVP
amplitude (Iani et al., 2004) (BVPAmp), which contains the amplitude between
the lowest (diastolic point) and highest (systolic point) peak in a one second
interval. Last, we also calculate the median absolute deviation (BVPMedAbsDev)
and the mean absolute difference (BVPMeanAbsDiff) among the BVP values
(Haapalainen et al., 2010). Here, BVPMedAbsDev is the median of the absolute
differences between individual measurements and the median of all measure-
ments. BVPMeanAbsDiff is simply the mean of absolute differences of each pair
of measurements. Both these features are calculated per interval of 125 ms.

56Empatica image taken from http://empatica.com.
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7.5.3 Skin-Based Measures

For skin-based features, we integrate the Microsoft Band v2 and again use the
Empatica and the Garmin devices, as depicted in Figure 7.5.

Figure 7.5: Empatica E4, Microsoft Band v2, and Garmin Forerunner 935 used for
skin-based CL measures57.

The Microsoft Band and Empatica both measure the commonly used galvanic
skin response (GSR) which is an indicator of CL. We also transform this signal
to the frequency domain (FreqGSR) as described in Chen et al. (2016). Follow-
ing their work, we also calculate data frames of length 16, 32, and 64 samples,
which are similarly transformed to the frequency domain and normalized by the
participant average (FreqFrameGSR).

Furthermore, we use the Ledalab software58 to calculate higher level skin con-
ductance features on the Empatica raw data. It provides us with “global” fea-
tures, namely the mean value (Ledaavg) and the maximum positive deflection
(LedaMaxDefl), and “through-to-peak (TTP)/min-max” analysis, namely the num-
ber of significant (i.e., above-threshold) skin conductance responses (SCRs)
(LedaTTP.nSCR), the sum of SCR amplitudes (LedaTTP.AmpSum) of significant
SCRs, and the response latency (LedaTTP.Lat) of the first significant SCR. Fur-
thermore, and most interestingly, we use Ledalab to perform a Continuous
Decomposition Analysis (CDA) (Benedek and Kaernbach, 2010), which separates
skin conductance data into continuous signals of tonic (background) and phasic
(rapid) activity. The features based on this CDA analysis again include the num-
ber of significant SCRs, the SCR amplitudes of significant SCRs, and the latency
of the first SCR (LedaCDA.nSCR, LedaCDA.AmpSum, LedaCDA.Lat). Furthermore, the
average phasic driver (LedaCDA.SCR), the area of phasic driver (LedaCDA.ISCR), as

57Empatica image taken from https://i.pinimg.com/originals/04/82/54/
0482548efb5dfca4394c56610952800a.jpg.

58http://www.ledalab.de/
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well as the maximum value of phasic activity (LedaCDA.PhasMax) and the mean
tonic activity (LedaCDA.Ton) features are created by the Ledalab software.

The Empatica and Garmin devices also measure the skin temperature, which we
use as a feature (SkinTemp).

7.6 Data Normalization & Segment-Wise Feature Calcula-
tion

The features described above can be categorized into two classes: single features
and continuous features.

By single features we mean features that yield only one value per segment:
This class comprises subjective measures (SubjCL), time measures (PeTime,
LNPeTime), text measures (BLEU, HBLEU, TER, HTER, SL), keyboard mea-
sures (APR, PWR), the amount-based eye features (BlinkAmount, FixAmount,
NormBlinkAmount, NormFixAmount), and all Ledalab skin features. However,
one should note that the time and text features here really only can be calculated
on the whole segment, while the amount-based eye features or the skin-based
Ledalab features could also be calculated over shorter periods of time.

Apart from these single features, all other features are basically just a continuous
signal (of different sampling rates) that we still need to transform to a directly
usable set of values per segment. Each signal is first normalized as described in
Chen et al. (2016) by dividing it by the participant’s mean value. Then 6 very
simple features are calculated from this normalized signal: the accumulated, av-
erage, standard deviation, minimum, maximum, and range (max−min), which
is comparable to many related works, e.g., Borys et al. (2017) and Ishimaru et al.
(2017). As an example, this means that GSR, actually consists of the 6 features
GSRacc, GSRavg, GSRstd, GSRmin, GSRmax, and GSRrange.

7.7 Conclusion

While the last chapter focused on the vision of a cognition-aware translation
environment, this chapter presented our multi-modal data capturing framework
which combines a variety of subjective, performance, behavioral, and especially
physiological features. It thus builds the basis for investigating which sensor
modalities work better or worse for estimating CL during PE of MT, and therefore
forms a necessary step towards achieving this vision. The next chapter will use
this framework in three studies to gain practical insights.
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Chapter 8
Cognitive Load Estimation

Experiments

Using the previously defined framework, we overall conducted 3 studies. Sec-
tion 8.1 presents a PE study with translation Master’s students using only parts of
the framework. Section 8.2 then shows a follow-up study with the full framework
and professional translators instead of translation students. Finally, section 8.3
explores the same framework with university students consuming videos and
answering questions in e-learning, to explore whether the same approach also
yields robust CL estimates in a different domain.

Section 8.1 is based upon publications Herbig et al. (2019a) and Herbig et al.
(2019c), section 8.2 is based on publication Herbig et al. (2021), and section 8.3 is
based on publication Herbig et al. (2020a).

8.1 Multi-Modal Cognitive Load Estimation with Transla-
tion Students

This first study explores large parts of the previously presented framework to
capture physiological, behavioral, and performance measures from translation
students while PE MT. Even though it does not involve the whole framework,
several of the tested features have not previously been explored in the translation
domain and especially PE domain. With the captured data, we investigate how
well predictive models based on feature combinations from these modalities can
predict perceived CL, as measured by our subjective rating scale (see section 7.2).
The different modalities and their combinations are then compared in terms of
regression performance. Finally, we analyze correlations between the best per-
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forming features and the corresponding subjective ratings to better understand
what benefits a multi-modal approach has. The results of our analyses indicate
that combining multiple modalities helps in detecting CL.

Compared to the literature, the works by Vieira (2014, 2016) presented in sub-
subsection 2.4.3 are probably the most closely related studies. However, our
approach differs in two important regards: (i) instead of just exploring eye, pause,
and time measures, we integrate many more CL measurement methods in a
multi-modal fashion that are previously unexplored in the translation domain,
and (ii) we analyze how well the self-report CL ratings can be predicted based
on these measurements to investigate the feasibility of automatically gathering
CL values for segments through different sensors.

We will first present which of the features from the framework were used in this
study, and then outline the MT system used to generate text for the experiment.
After that, we will discuss the experiment to capture data in more detail, before
we present the corresponding data analysis. Finally, we will present limitations
to the approach and discuss the main take-aways.

8.1.1 Analyzed Measures of Cognitive Load

Among the CL measures presented in chapter 7, we use SubjCL, so the subjective
CL rating provided after editing each segment as the core measure to which we
link all other measures. The goal is thus to see how well SubjCL can be assessed
by other means, because introspection and reporting of CL was shown to be
sensitive to small differences and reliable (Paas et al., 2003), but unable to capture
real-time changes in CL (Moissa et al., 2019).

All measures that we compare against SubjCL and against each other can be
categorized as follows: (1) time-based measures, (2) text-based measures, (3)
sensor-based measures consisting of typing-, eye-, heart-, skin-, emotion-, and body
posture-based measures. Finally, we explore (4) combinations of the previous three.

The time measures are the post-editing time (PeTime) or the length-normalized
post-editing time (LNPeTime); the text features consist of BLEU, HBLEU (Lin
and Och, 2004), TER, HTER (Snover et al., 2009), and sentence length (SL), as
well as all combinations thereof.

The typing-based measures comprise APR and PWR.

Using a Tobii 4C eye tracker, we further capture the eye-based measures
BlinkAmount, FixAmount, SaccDuravg, and SearchProbavg. All of these features
also work without the expensive Pro SDK, thus, making real-world usage more
realistic. Furthermore, we use a web-cam to capture the eye openness (EARavg).

For heart-based measures, we integrate a Polar H7 heart belt communicating
with the computer via Bluetooth Low Energy. From its raw RR data, we capture
RMSSDPolar

avg and SDNNPolar
avg , thus, for each participant the normalized RMSSD

and SDNN signal averaged across segment.
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For skin-based measures, we include the Microsoft Band v2, a small bracelet
offering a galvanic skin response sensor. In terms of CL measures, we again
normalize by participant and capture GSRMSBand

avg , GSRMSBand
acc , and the frequency

domain feature FreqGSRMSBand
avg .

Using a web-cam, we further capture emotion measures from facial expressions
(EmotionName).

Last, a Kinect v2 captures the body posture, from which we extract the head
distance (HeadDistavg).

For the sensor features, the modalities heart, eyes, skin, keyboard, body posture,
and emotions are evaluated individually and combined. For the combinations, we
combine these sensor combinations with the time and text-based features.

8.1.2 Machine Translation System

Apart from the sensors, we need to generate state-of-the-art translations for our
experiments that contain realistic error types. For this, we adapted the ConvS2S
NMT system (Gehring et al., 2017) trained on English-German parallel data from
the WMT 2017 translation task. We use an ensemble of four expert ConvS2S
NMT models with different random weight initializations. To mitigate the label
bias problem (Lafferty et al., 2001), each model was trained separately to decode
from left-to-right and right-to-left, i.e., we achieve a left-to-right and right-to-left
decoding symmetry for MT. Finally, we re-score hypotheses by interpolating
left-to-right and right-to-left scores with uniform weights. Before training our
NMT model, we preprocessed words into subword units (Sennrich et al., 2016)
using BPE. We followed the best hyperparameter settings as described in Gehring
et al. (2017). During translation (i.e., at the decoding time) we set the beam size
to 5. The overall performance achieved by our NMT system is 29.5 in BLEU and
60.1 in TER on the WMT 2017 test set. Compared to the best system in WMT-2017
(Sennrich et al., 2017), ConvS2S achieves +1.2 BLEU and -1.1 TER absolute points.
Even though MT quality has improved further since this experiment, the used
system can still be considered high-quality and thus results remain relevant.

8.1.3 Data Capturing Experiment

We conducted an experiment to see if and how we can automatically determine
the CL perceived during PE and whether our multi-modal approach facilitates
the CL measurement process. The study was approved by the university’s
ethical review board and the data protection officer. All data used through-
out this experiment is publicly available at http://mmpe.dfki.de/data/
MTJournal2019.
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Text Selection

Similar to Vieira (2016), we used a subset of the WMT 2017 news translation task
test set as text for this study. After using our NMT system, we extracted 300
sentences and their translations, 100 each within the TER intervals [35-50], [60-70],
and [80-95]. All segments had a length of ≤ 35 words. Out of these 300 sentences,
we extracted 60 segments based on error rules to ensure different difficulties are
represented in this set. For this, we categorized the errors contained as being
either errors of lexical choice, containing mistranslated words or errors in fluency,
or errors in word order. By selecting sentences containing these error types and
combinations thereof, we hoped to induce different levels of CL.

To further reduce the amount of segments and to ensure that these actually can
cause different levels of CL on the participants, we performed a pre-study (with
counterbalanced segment order). Two German natives with a similar English skill
level, as both are in the same translation science Master’s program, participated
and translated the 60 segments. A pop-up appeared after each segment asking
for a subjective CL rating. We used the resulting 2 times 60 segment ratings to
pick 30 segments for the final study. For this selection, we filtered out segments
with disagreement >3 on the 9-point Likert scale, meaning that they had at least
a similar judgment. To pick 30 sentences, the remaining sentences were ordered
by average CL rating, and we removed multiple segments with equal average
ratings to achieve an equal rating spread. The hope was that this well-distributed
set of CL perceptions with respect to the data among the participants of this
pre-study leads to transferable ratings in the final study. Note however, that
we did not use the pre-study ratings as the CL labels for the following actual
study, but only to perform this pre-selection of segments. In the main study we
again ask the participants for CL ratings, and use their individual ratings for the
analysis to capture inter-participant differences.

All participants in the final study used these same 30 segments; however, the
order was randomized to avoid ordering effects. While using WMT data, which
consists of independent segments instead of complete texts, prevents us from
analyzing the effects of textual (i.e., cross-sentential) coherence and cohesion on
CL, it allows us to perform this randomization of segment order which would
not make sense with a complete text. Since each participant receives the same
segments in a different order, potential effects such as feeling tired towards the
end of the experiment do not always affect the same segments and therefore
balance out.

Apparatus

For the study, the post-editor is equipped with a Microsoft Band v2 on her right
wrist, the Polar H7 heart belt on her chest, and the Tobii 4C eye tracker, as well as
two web-cams and a Microsoft Kinect v2 camera facing her. As input possibilities,
a standard keyboard and mouse are attached, and a 24-inch monitor displays the
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SDL Trados Studio 2017 translation environment. We chose SDL Trados Studio
for this study as it is by far the most used CAT tool in professional applications
(see section 2.3.2).

Participants

The experiment participants were 10 native German speakers enrolled in the
translation Master’s degree program, who had already attended a CAT tools
class where they had completed the SDL certification program including practice
sessions. From that class, all of them were familiar with MT concepts and PE. 7
female and 3 male paid students, aged 22 to 32 (average, 25.9), participated.

Prior to the actual experiment, the participants were asked to fill out a data
protection form and a basic questionnaire gathering demographics as well as
language skills and translation/PE experience. Furthermore, they were given
written instructions explaining that they should (1) post-edit the proposed trans-
lations and not translate from scratch, and (2) focus on grammatical and semantic
correctness while avoiding unnecessary editing. Concrete time limits were not
stated. The reason for clearly specifying how detailed the corrections should
be was to ensure a similar PE process across participants; other specifications
would also have been valid for such an experiment. Before starting the actual PE
process, they were given time to familiarize themselves with the environment,
e.g., to adjust the chair and adapt the Trados View settings.

Subjective CL Ratings

All 9 CL ratings were used during the experiment; however, 89.7% of the ratings
were within the range 3 to 7 (inclusive) while the extreme cases were only rarely
chosen (see Figure 8.1 for the rating distribution). We also observe rating differ-
ences between post-editors, with an average standard deviation across segments
of 1.3 (minimum 0.8, maximum 2.1). Note that we use these individual CL rat-
ings for the remaining analyses to also capture the differences in CL perceptions
between participants.

A reason for the non-uniform, rather normal rating distribution could be the
strong wording chosen by the authors of the scale we used to assess perceived
CL (Paas and Van Merriënboer, 1994): ‘very, very high/low mental effort’ is
something that we believe users simply do not identify themselves with often.
Even though we invested work in finding segments that we expected to induce
very, very low or high mental effort through the pre-study, the inter-personal
differences seem to simply be too high to ensure this. These inter-personal rating
differences also show why CL and the BLEU perspective of MT quality cannot
be considered equal, since the latter is an objective measure, while perceived CL
is an inherently subjective variable and depends on how individuals cope with
variation in the demands of a task (Vieira, 2016).

181



1 2 3 4 5 6 7 8 9
Subjective Rating

0

10

20

30

40

50

60

70

80

Am
ou

nt

Figure 8.1: Segment distribution across subjective CL scale ranging from 1 =
“very very low mental effort” to 9 = “very very high mental effort”.

8.1.4 Data Analysis Overview

Based on the subjective ratings and the sensor data corresponding to these ratings,
we conduct an analysis consisting of two parts. First, we investigate how well
the CL perceived by the individual participant can be predicted from different
modalities and whether a combination of modalities improves the accuracy (see
subsection 8.1.5). Second, we look at the concrete features that performed well
in this first stage and analyze their correlations with subjectively measured CL.
This second stage provides further insights into reasons for and against using
multi-modality (see subsection 8.1.6).

For both analyses, we use the above (see section 8.1.1) categories of feature sets,
which are compared against each other: (1) time-based features, (2) text-based
features, (3) sensor-based features, and (4) a combination of the previous three.

8.1.5 Multi-Modal Cognitive Load Detection – Regression Analysis

Method

Problem Framing The goal of this stage is to learn a function that best fits the
implemented time, text, sensor, and combined features to the CL as reported by
each participant on the subjective rating scale after each segment; thus, the output
space is 1 to 9. We consider each segment of each participant an individual sample
with the corresponding subjective rating as a label. Please note that neither a
manual annotation nor an average CL rating across participants is used here,
because we focus on the CL perceived by each individual and not on any general
measure of quality. The reason why we focus on subjectively assessed CL is
that it is good at capturing inter-translator differences in contrast to any general

182



measure of quality. This is important because the task difficulty by itself is of a
subjective nature, as it depends on the translator’s experience with similar texts,
vocabulary, etc.; hence, the translations are not objectively hard or easy.

Baselines Apart from comparing the different regression models against each
other, we also compare each model to two simple baselines: (1) always predicting
the mean subjective rating (SubjCLavg), and (2), always predicting the median
subjective rating (SubjCLmedian).

Explored Models Since different features and combinations of features require
different types of functions to best approximate them locally (e.g., not all of
them show linear, polynomial, or radial relations), we train not only one, but
several regression algorithms making different assumptions about the underlying
function space: a support-vector regressor (SVR) with a radial basis function
kernel, and linear models with different regularizers, namely a stochastic gradient
descent regressor (SGD), a Lasso model (Lasso), an elastic net (ENet), and a
Ridge regressor (Ridge), as well as a non-linear random forest regressor (RF),
all provided in the scikit-learn library59 using the default parameters and
feature normalization. In this way, for each feature and group of features we
obtain locally optimal results before comparing them and drawing conclusions
on the usefulness of the features involved. While this approach might miss some
ideal hyperparameter combination, it offers a reasonably wide range of function
spaces to choose from and, furthermore, we did not want our results to be biased
and possibly be distorted by the use and limitations of a single classifier (and
with it the class of functions that can be learned).

Analysis Details Please note that the rating scale used (Paas and Van Merriën-
boer, 1994) is ordinal; however, the outputs of the regressors can be continuous.
The reason is that we explicitly decided to use the scale as it was designed and
verified without any alterations, but did not see value in forcing the models to
output ordinals because their target value, CL, spans a continuous space. To
avoid over-fitting, all regression functions use regularization or averaging, and
we perform cross-validation. Missing data values for features are replaced by the
mean of the feature values across all participants and segments.

We report the results of the individual features, of combining features within
a modality, and of combining features across modalities. Feature combination
is always achieved using simple vector concatenation. Whenever the space of
possible feature combinations becomes too large, 1000 samples of random feature
combinations of a maximum of 5 and a maximum 10 features per combination
are used instead of all possible combinations. For the sensor and combined feature
sets, we ensure that features of different modalities are combined: for the sensor
features, features of multiple sensor modalities are mixed, and for the combined

59http://scikit-learn.org/
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sets, we ensure that at least one feature of time or text is combined with one or
multiple sensor-based features.

For all of these feature combinations, we train each of the above regressors
using a 10-fold stratified cross-validation, which also considers the inbalanced
rating distribution. For each regressor, the average test mean square error (MSE)
is computed across the 10 folds. This average score is then compared across
regressors as it is a good measure for our actual goal: predicting the CL as
precisely as possible. We choose the MSE as the main metric, since the error
squaring strongly penalizes large errors, which are particularly undesirable for
our goal.

For each reported model, we also perform a 5 by 2 cross-validation which we use
to statistically compare the different models. This method has been suggested
by Dietterich (1998) as it ensures that each sample only occurs in the train or test
dataset for each estimation of model skill, thereby reducing inter-dependencies.

Since we expect that more information helps predict perceived CL, we hypoth-
esize that combinations perform best, followed by sensor-, then text-, and last,
time-based features.

Results

General The regression results are presented in Tables 8.1 and 8.2. The results
are divided into the five categories baselines, time, text, sensor and combined features.
First of all, one should note that the results for 10-fold and 5 by 2-fold cross-
validations are rather similar, which indicates robustness of the models that is
also reflected in the small standard deviations. We compare each 5 by 2-fold cross-
validation MSE score using a univariate ANOVA with all models as conditions
and calculate the contrasts to the mean and median baselines as references. Both
ANOVAs violated the sphericity assumption but still showed strong significance
(p < 0.01) after Greenhouse-Geisser correction of the degrees of freedom. The
table shows that all models are significantly better than the median baseline, and
that most but not all models are also significantly better than the mean baseline
(after Bonferroni correction).

Time and Text Features For time features, we notice that PeTime performs
better than its length-normalized alternative (LNPeTime), and that both are
significantly better than the two baselines. In contrast, the results for the text-
based features do not differ as much from each other, and are closer to the
baselines, where BLEU, HTER, and HBLEU are not significantly better than the
mean baseline. Note in particular that contrary to our expectation the results are
worse than those for the time features.

Sensor Features The sensor features are again separated into the individual
modalities. The combined eye-based features show the best results, followed
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by the skin, keyboard, and then heart. Inferred emotions and body posture
considered individually show worse results. Regarding inferred emotions, we
only report the best emotion and the best combined set of emotions, as all others
had very similar results and in general the MSE’s are very close to the baselines,
indicating that these features in this simple form do not perform well.

Combined Features The last section among the sensor features shows that us-
ing a combination of multiple modalities improves results considerably compared
to each modality used alone, and that this combination also performs better than
the time and text-based features. Here, the best result for up to 10 features and
the best result for up to 5 combined features are reported, even though several
other combinations with similar results were found among the sampled features.
The last section in the table shows the results when combining not only sensor
modalities, but also incorporating time and text features. These results are also
better than those of multi-modal sensor features. Again, the best results for up to
10 and up to 5 feature combinations are reported.

Pairwise Comparison We further use the 5 by 2 cross-validation results in
combination with a modified t-test (Dietterich, 1998) followed by Bonferroni-
Holm corrections to test the differences between the best models of time, text,
sensor, and combined features for significance. Table 8.3 shows that indeed the
combined approach is significantly better than time and text, and that sensor is better
than text; however the other pairs reported in the table do not show statistically
significant differences.

Discussion

Although the concrete ratings differ between post-editors, the methods to mea-
sure CL, especially the multi-modal ones, are apparently transferable.

Time and Text Features When comparing time and text features, we are sur-
prised to see that PeTime seems to be the better, albeit not significantly better,
measure of perceived CL, which also performs quite well in general. The sen-
tence length and therefore length normalization does not seem to provide further
insights in terms of CL. Interestingly, the H-based text features do not improve
results compared to BLEU/TER as we have expected, and even contrarily, do
not beat the simple mean baseline on our dataset. A reason for this could be
that CL does not focus on how much needs to be edited, but on how difficult it
is to do so, which strengthens the need for CL detection. Inspecting the data in
further detail, we find 60 out of 260 cases where multiple participants rated the
same segment as equally tough while having an editing difference of more than
30 HBLEU. This supports our above argument, that several cases exist where
strong differences in editing behavior do not impact the CL perception.
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MSE
Features 1x10-CV↓(Reg.) 5x2-CV↓ (SD)
Baselines
SubjCLavg 2.466 (-) 2.465 (0.093)††

SubjCLmedian 2.540 (-) 2.538 (0.093)**
Time Features
PeTime 1.891 (Ridge) 1.878 (0.061)**††

LNPeTime 2.052 (Lasso) 2.037 (0.091)**††

Text Features
BLEU 2.330 (RF) 2.380 (0.118)††

TER 2.340 (RF) 2.350 (0.159)*††

HTER 2.311 (EN) 2.383 (0.174)†

HBLEU 2.341 (EN) 2.384 (0.150)††

SL 2.437 (Ridge) 2.444 (0.087)*††

HBLEU, TER, SL 2.261 (Ridge) 2.321 (0.165)*††

Sensor Features
Heart
RMSSDPolar

avg 2.285 (Ridge) 2.282 (0.054)**††

SDNNPolar
avg 2.352 (Ridge) 2.379 (0.078)**††

RMSSDPolar
avg , SDNNPolar

avg 2.304 (SVR) 2.309 (0.057)**††

Eyes
BlinkAmount 2.034 (Ridge) 2.040 (0.062)**††

FixAmount 2.276 (SVR) 2.292 (0.131)**††

SaccDuravg 2.415 (Lasso) 2.421 (0.122)††

SearchProbavg 2.462 (Lasso) 2.247 (0.094)††

EARavg 2.424 (Ridge) 2.438 (0.093)**††

BlinkAmount, FixAmount, SearchProbavg, EARavg 1.704 (RF) 1.803 (0.175)**††

Skin
GSRMSBand

avg 2.462 (Lasso) 2.461 (0.093)††

GSRMSBand
acc 2.181 (Lasso) 2.185 (0.041)**††

FreqGSRMSBand
avg 2.402 (Ridge) 2.383 (0.082)*††

GSRMSBand
avg , GSRMSBand

acc , FreqGSRMSBand
avg 2.074 (Ridge) 2.117 (0.079)**††

Keyboard
APR 2.307 (Ridge) 2.311 (0.139)**††

PWR 2.259 (SVR) 2.265 (0.128)**††

APR, PWR 2.219 (Ridge) 2.247 (0.139)**††

Body Posture
HeadDistavg 2.445 (SGD) 2.460 (0.095)**††

Emotions
Angeravg 2.430 (SGD) 2.445 (0.089)**††

Angeravg, Neutralavg, Sadnessavg, Surpriseavg 2.383 (RF) 2.420 (0.101)**††

Table 8.1: Feature evaluation results (1) for 10-fold and 5 by 2-fold cross-validation
(CV) with standard deviation (SD). An asterisk (*) in the right column indicates
a significant difference to SubjCLavg, while a dagger (†) indicates a significant
difference to SubjCLmedian. */† represent p < 0.05, **/†† represent p < 0.01 after
Bonferroni correction.
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MSE
Features 1x10-CV↓(Reg.) 5x2-CV↓ (SD)
Combined Sensors
Keyboard (TER)
Eye (BlinkAmount, FixAmount, SaccDuravg, EARavg) 1.512 (RF) 1.639 (0.153)**††

Skin (GSRMSBand
acc , GSRMSBand

avg , FreqGSRMSBand
avg )

Heart (SDNNPolar
avg , RMSSDPolar

avg )
Eye (BlinkAmount, FixAmount, EARavg)
Skin (GSRMSBand

acc , GSRMSBand
avg ) 1.595 (RF) 1.646 (0.115)**††

Combined Features
Time (PeTime)
Keyboard (APR, PWR)
Eye (BlinkAmount, FixAmount, EARavg, SaccDuravg,

SearchProbavg) 1.434 (Ridge) 1.487 (0.069)**††

Skin (FreqGSRMSBand
avg )

Heart (RMSSDPolar
avg )

Time (PeTime)
Skin (FreqGSRMSBand

avg )
Eye (BlinkAmount, FixAmount) 1.490 (Ridge) 1.508 (0.084)**††

Heart (RMSSDPolar
avg )

Table 8.2: Feature evaluation results (2) for 10-fold and 5 by 2-fold cross-validation
(CV) with standard deviation (SD). An asterisk (*) in the right column indicates
a significant difference to SubjCLavg, while a dagger (†) indicates a significant
difference to SubjCLmedian. */† represent p < 0.05, **/†† represent p < 0.01 after
Bonferroni correction.

Sensor Features While the heart features all significantly outperform the base-
line, they generally show similarly bad results as the text features. Based on the
literature, we were expecting to find better results here. In comparison to this,
combining several eye features yields the best results among all individual modal-
ities, and also better results than any time or text feature. Interestingly, the amount
of blinking alone already shows good results and is better than eye-tracking data
using only web-cam data (i.e., EARavg).

Combinations of GSR-based skin features or the accumulated GSR value also
work comparatively well, however, we had expected better results based on the
literature here. Since smartwatches are spreading and often include GSR sensors,
this data is especially interesting because it could be easily read by future CAT
tools. For the keyboard features we see only small differences between PWR
and APR, and the combination of both does not boost the model’s performance.
Based on the findings by Lacruz et al. (2012), we also expected better results for
these features.

The normalized distance to the participant’s head as a body posture feature does
not perform better than text-, time- or many of the sensor-based features and
while being significantly better than the baseline, the gains are diminishingly
small. Maybe more complex features on the human body posture can provide
better results in the future. Emotions also do not perform better than most of the
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Time:

PeTime

Time

Text:
HBLEU,
TER,
SL

t̃ = 2.79 Text

Sensors:

Keyboard (TER)
Eye (BlinkAmount, FixAmount,

SaccDuravg, EARavg)
Skin (GSRMSBand

acc , GSRMSBand
avg ,

FreqGSRMSBand
avg )

Heart (SDNNPolar
avg , RMSSDPolar

avg )

t̃ = −2.07 t̃ = −7.06** Sensors

Combined:

Time (PeTime)
Keyboard (APR, PWR)
Eye (BlinkAmount, FixAmount, EARavg,

SaccDuravg, SearchProbavg)
Skin (FreqGSRMSBand

avg )
Heart (RMSSDPolar

avg )

t̃ = −10.75** t̃ = −4.59* t̃ = −0.55

Table 8.3: Pairwise comparisons between the best models of time, text, sensors, and
combined features. * shows significance with p < 0.05, while ** means p < 0.01
after Bonferroni-Holm correction. t̃ is the test statistics for the modified paired
t-test (Dietterich, 1998).

other features and the gains compared to the baseline, albeit significant, have
limited practical use. Again, further investigation and more complex features
than the normalized mean might improve this in the future.

Combined Features Combining the different sensor modalities improves the
results, showing the advantage of our multi-modal approach. This is in line with
Vieira (2016)’s discussion after analyzing the correlations between eye, keyboard,
time, and subjective measures, stating that “different measures may be more
sensitive to different nuances of cognitive effort, which would imply that, while
a single construct, cognitive effort might have different facets”. Our combined
sensor modalities improve (insignificantly) over time and (significantly) over text
features (see Table 8.3), but also seem better than any individual modality. When
combining across time, text, and sensor features, even better results are achieved,
which significantly outperform both time and text features. Generally, these
results show that combining multiple modalities of CL indicators improves the
regression quality, especially in comparison to each individual modality.
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Summary To summarize, while almost all individual features statistically out-
perform the baselines, the gains of most features are small; thus, the only prac-
tically really interesting features are PeTime, the combination of several eye
features, and in particular the combination of features from several modalities.
Regarding our hypothesis stated earlier, we could show better results for com-
bined than for sensor features, which again outperformed time- and text-based
features. However, contrary to our expectations, time was a considerably better
measure than text. One should note that these results were achieved without
optimizing feature preprocessing, that no hyperparameter tuning was applied,
and that simple random sampling of feature sets was used, because we were only
interested in a fair comparison between the methods and not in finding the best
possible model. Using a more informed approach might therefore decrease the
MSEs in the future.

8.1.6 Why Multi-Modality Helps – Correlation Analysis

After inspecting the overall performance of different modalities and their combi-
nations in terms of regression analysis, we now inspect the individual features in
more detail. For space reasons, however, we cannot discuss every single feature.
Instead, we focus on some of the features used by the best-performing regressor
in the combined feature sets, and additionally the TER feature to also include a
text-based feature.

Results

Figure 8.2 shows violin plots of the individual feature values plotted against the
subjective CL ratings provided by each participant. Inspecting the course of the
means (circles) or medians (crosses), we notice that there is a certain dependence
between the individual features and their corresponding ratings. At the same
time, we can clearly see a lot of noise around those means/medians (note that
the limits in violin plots are the minimum and maximum values).

An analysis of Spearman’s correlations between those features and the corre-
sponding subjective ratings yields further insights into why our various regres-
sors perform differently. To interpret the correlation coefficients, we use the
interpretation of Corder and Foreman (2009), stating that values around ±0.1 can
be considered as weak, values around ±0.3 as moderate, and values around ±0.5
as strong correlations.

As can be seen in Table 8.4, PeTime strongly correlates (+0.505) with the sub-
jective ratings, which explains why the regressor trained solely on that feature
already performs quite well. This can also be seen in the corresponding plot,
showing an upwards tendency with only a moderate amount of noise. The
text feature TER on the other hand shows a lot of noise and a strong diver-
gence between means and medians. The correlation coefficient of +0.276 can
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be interpreted as moderate. Contrary to the results for TER, there is a negative
correlation for the heart feature RMSSDPolar

avg (−0.220) that is weak to moderate.
For the eye features BlinkAmount, FixAmount, and SaccDuravg, we find strong
positive (+0.453), moderate negative (−0.262), and weak to moderate positive
correlations (+0.193), respectively. For skin features, we can observe moder-
ate negative correlations (−0.264) with subjective CL ratings. One should note
here that for the plot and calculation the imaginary part of this complex feature
was dropped. Last, for the keyboard-based feature APR we can also observe
moderate negative correlations (−0.308). All reported Spearman correlations are
statistically significant with p-values < 0.001.

Feature Spearman’s ρ Interpretation p-value
PeTime +0.505 Strong < 0.001
TER +0.276 Moderate < 0.001
RMSSDPolar

avg −0.220 Weak to moderate < 0.001

BlinkAmount +0.453 Strong < 0.001
FixAmount −0.262 Moderate < 0.001
SaccDuravg +0.193 Weak to moderate < 0.001
FreqGSRMSBand

avg −0.264 Moderate < 0.001

APR −0.308 Moderate < 0.001

Table 8.4: Spearman’s correlation results between different features and subjective
CL ratings.

Discussion

These results show why multi-modality helps: Apart from PeTime and
BlinkAmount, all reported correlations are weak to moderate, so by themselves
not sufficient for good subjective CL detections. However, each modality pro-
vides a little more insight into the overall CL perception. Therefore, combining
features of several modalities in a single regressor increases its performance. This
is also why the best regressor of the eye features (see Tables 8.1 and 8.2), or the
regressors of combined features, show better results than the regression model
trained solely on PeTime, even though the latter correlates more strongly. The
combination with this strongly correlated PeTime that was used in the best model
of the combined feature sets then naturally improves performance compared to
the models of sensor-based features. Note however, that Spearman correlations
can only capture monotonic correlations, thus more complex, e.g., bell-shaped,
or even concave relationships cannot be analyzed using this method.

In practice, of course, one should consider what modalities are available and
feasible and stack these to achieve better accuracy. Freelance translators probably
do not have eye-tracking devices at home; however, as smartwatches and fitness
trackers are becoming more and more common, an integration of CL detections
based on skin and heart data gathered through such devices could be a good and
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Figure 8.2: Violin plots for different feature values per subjective rating (x-axis).
The circles indicate the means, the crosses the medians.
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simple addition to CAT tools. Translation companies with fixed workstations
might even consider investing in consumer eye trackers like the one used in
this study, as the eye features seemingly perform best in this setting. Naturally
these modalities should be combined with the easy-to-integrate keyboard- and
time-based features that do not require any additional hardware, to increase the
CL detection accuracies further.

8.1.7 Limitations

The presented results are subject to the following limitations: The data sample
is relatively small, since only 10 subjects participated in our study, and the
participants were translation Master’s students and not experts with several
years of work experience. Next, while we performed cross-validation and only
report results on segments unseen during training, we did not completely leave
out participants and then predict those participants’ perceived CL from the data
gathered by the other participants. Thus, to achieve these results in practice one
may need to fine-tune and train for new users and cannot expect the existing
model to work immediately. Furthermore, the choice of sentences, upon which
our two test participants roughly agreed, might lead to different results than
evaluating the approach in-the-wild. Moreover, our prediction approach is rather
indirect: Using sensor measurements, we predict the subjectively assessed CL,
which we assume to be a good proxy for actual CL based on the literature.
While the rating scale used has been utilized in a large variety of experiments,
participants may still have had different interpretations of the scale’s labels that
might have biased the results. One should also note that our eye tracker only
samples at 90 Hz (as opposed to 240 Hz), which could affect the peak velocity
reconstruction and thereby saccades (Mack et al., 2017). Last, due to the high
variability across subjects, mixed effect regression models (Demberg and Sayeed,
2016) might provide further interesting findings in the future.

8.1.8 Conclusion

This first study using parts of the multi-modal CL estimation framework focused
on predicting and correlating perceived cognitive PE effort. In contrast to the
related works in the translation domain, we investigated whether and how
multiple modalities to measure CL can be combined and used for the task of
predicting the level of perceived CL during PE of MT. To the best of our knowledge,
several of the implemented physiological and behavioral features, e.g., heart rate
variability or eye aspect ratio, have not previously been explored in PE. In
our study, PE time correlates strongly with perceived CL; however, text-based
features show weaker performance. Among the sensor modalities, eye-based
features (in particular the blink amount) show the best results, but combining
multiple modalities like those based on the skin, eye, etc. improves results further,
showing the advantages of a multi-modal approach. Using such a combination
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of modalities, we can estimate CL during PE without interrupting the actual
process through manual ratings.

Regarding our second overall research question, we showed that multi-modal
sensor input indeed helps estimate CL during PE of MT. The study thus con-
tributes to our overall goal: decreasing the perceived CL, and thereby stress
and exhaustion, during PE, e.g., by optimizing MT systems on the user’s CL
measurements to produce less demanding outputs or by intervening in the PE
process within CAT tools. Naturally, the next steps involve using larger parts of
the framework, and running a similar study with professional translators, which
is the focus of the next section. This second study will also apply data filtering
approaches and feature selection approaches to make better use of the available
data than the regression approach chosen for this initial investigation.

8.2 Multi-Modal Cognitive Load Estimation with Profes-
sional Translators

The previous study has shown that automatically estimating perceived CL based
on a variety of sensors is feasible, and that a multi-modal approach facilitates this.
However, the study only utilized a small subset of our measurement framework
to which the presented results are limited. Furthermore, the target users were
translation Master’s students and not professionals. In this study, we thus use
an even wider range of physiological, behavioral, performance, and subjective
measures, yielding the so far most diverse set of features from a variety of
modalities that has been investigated in the translation domain. We again analyze
how well predictive models based on feature combinations from these modalities
can predict perceived CL, as measured by subjective ratings on a well established
CL scale from psychology (Paas and Van Merriënboer, 1994). The different
modalities and their combinations are again compared in terms of regression
performance. Furthermore, and similar to Vieira (2016), we investigate pairwise
correlations between different interesting indicators of CL and also subjectively
assessed CL, and run a principal component analysis (PCA) to figure out which
features capture similar or distinct underlying concepts. This step aims to help
us understand the relation between the different CL estimators. The results of
our analyses indicate that heart, eye, skin, as well as combined measures perform
very well on their own, while text, keyboard, body posture, or time features only
perform well when considering the individual participant and segment s/he is
editing. Overall, the best predictive model achieved a regression score of 0.7
mean squared error (MSE) on a 9-point scale, which should be sufficient for most
application scenarios discussed in chapter 6.

As we did in our previous study with translation students, we begin by clearly
specifying the features used, then present the methodology, and finally go over to
the results and discussion, which consists of the two main parts: (i) multi-modal
regression analysis and (ii) pairwise correlations and PCA.
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8.2.1 Analyzed Measures of Cognitive Load

Compared to Vieira (2016), our last study with translation students already
increased the amount of analyzed features significantly by adding heart-, skin-,
and camera-based features. For this study, we add even more and higher quality
sensors and add further high-level features.

As in the last study, we show a pop-up asking for SubjCL after each segment
using the same scale as before (Paas and Van Merriënboer, 1994). These subjective
ratings are simultaneously the target values when training the regression models.

For the time features we again integrate PE time (PeTime) and length-normalized
PE time which also considers the segment length (LNPeTime).

Identical to our last study, text features consist of smoothed BLEU, HBLEU (Lin
and Och, 2004), TER, HTER (Snover et al., 2009), and sentence length (SL).

As typing features we again capture the higher-level pause features APR and
PWR by Lacruz et al. (2012), which were shown to correlate with PE effort.

For eye-based features, the same hardware as before (a web-cam and the Tobii
4C eye tracker) is used to capture the eye aspect ratio (EAR, Soukupova and
Cech (2016)), the amount of blinking (of less than 2 s length) (BlinkAmount),
its normalization by the PE time (NormBlinkAmount, Van Orden et al. (2001)),
and similarly the amount of fixations (FixAmount) and its time-normalized ver-
sion (NormFixAmount). Furthermore, fixation durations (FixDur) and saccade
durations (SaccDur) (Doherty et al., 2010; Moorkens et al., 2015) as well as the
probability of visual search based on the eye movements (SearchProb, Goldberg
and Kotval (1999)) are added. As a main distinction from our last study, we also
capture the pupil diameter (PupilDiameter, O’Brien (2006a)) which we get from
the Tobii Pro SDK. As discussed in chapter 7, we calculate the higher level fea-
tures Index of Cognitive Activity (ICA) with two approaches: one using a wavelet
transformation to calculate the amount of rapid dilations (ICAwave), while the
other simply counts how often a sample deviates by more than 5 times the rolling
standard deviation from the rolling mean of the signal (ICAcount). We also check
for sharp changes and continuations of the ramp in the Hilbert unwrapped phase
of the pupil diameter signal (Hilbert, Hossain and Yeasin (2014)).

For heart measures, we integrate the Polar H7 belt and the Garmin Forerun-
ner 935 watch to capture the heart rate (HR), and use the Polar and the Em-
patica E4 wristband to capture the RR interval (RR) and all our Heart Rate
Variability (HRV) (Rowe et al., 1998) measures (RMSSD, SDNN, NN50, and
pNN50, Shaffer and Ginsberg (2017)). Furthermore, the Empatica captures
the blood volume pulse from which we capture a variety of features (BVP,
BVPAmp,BVPMedAbsDev,BVPMeanAbsDiff as discussed in chapter 7). The
main difference compared to our last study regarding heart features is that we
additionally included the Garmin and Empatica devices, which allowed us to also
integrate BVP-related measures. Furthermore, we extended the set of considered
HRV measures to also include NN50 and pNN50.
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For skin-based features, we use the Microsoft Band v2 and Empatica to capture the
GSR and frequency domain features (FreqGSR,FreqFrameGSR) as described in
chapter 7. Furthermore, we now use the Ledalab software to calculate the “global”
features (Ledaavg, LedaMaxDefl), and “through-to-peak (TTP)/min-max” features
(LedaTTP.nSCR, LedaTTP.AmpSum,LedaTTP.Lat), as well as features based on Con-
tinuous Decomposition Analysis (CDA) (Benedek and Kaernbach, 2010), separat-
ing skin conductance data into continuous signals of tonic (background) and pha-
sic (rapid) activity (LedaCDA.nSCR, LedaCDA.AmpSum, LedaCDA.Lat,LedaCDA.SCR,
LedaCDA.ISCR, LedaCDA.PhasMax,LedaCDA.Ton). Finally, the Empatica and Garmin
devices also measure the skin temperature, which we use as a feature (SkinTemp).
The differences from our last study for the skin features are as follows: We further
use the skin resistance data delivered by the Empatica E4 wristband, on which we
calculate the same features as before, but additionally add the Ledalab features.
Furthermore, we integrate the skin temperature features.

Emotions are not used in this study, as their results did not yield much perfor-
mance in the last study, and the approach of sending the data to an emotion
recognition API led to privacy concerns among some participants.

As body posture features, we again use the distance to the head and normalize it
per participant (HeadDist).

In terms of data normalization, this time we use the whole approach described
in chapter 7, which means keeping the global features and calculating the 6 very
simple features from the normalized signal of the continuous features: the accumu-
lated, average, standard deviation, minimum, maximum, and range (max−min).
Note that the previous study focused solely on the per-participant normalized
average value per segment, and did not include the other 5 features.

Furthermore, we applied a more strict data filtering approach: For this, we
manually inspected the data distribution per segment and participant for outliers
and overall data quality. First of all, the Empatica E4 sensor, which claims clinical
quality observations, indeed shows the fewest outliers and nicely bell shaped data
distributions. In contrast, the Polar H7 sports sensor and the Microsoft Band v2
showed much more noisy data. Therefore, we filtered values according to visual
inspection and related literature: data above 100000 kΩ for the raw Microsoft
Band GSR was removed. Furthermore, Polar RMSSD and SDNN values above
1000 (van den Berg et al., 2018) as well as HRPolar and RRPolar samples which
fall outside the acceptable 50–120 beats per minute or 500–1200 ms ranges were
ignored (Shaffer and Ginsberg, 2017).

8.2.2 Method

To explore this enhanced feature set for capturing CL in PE, we perform a user
study that was again approved by the university’s ethical review board. We first
describe the text selection and apparatus, and then present our data analysis
approach, which is an extension to the approach used for the previous study.
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Text Selection and Apparatus

As text, we used the same 30 sentences as in the last study (see subsubsection 8.1.3)
which participants see within SDL Trados Studio in randomized order to avoid
ordering effects.

For the study, the post-editor is equipped with a Microsoft Band v2 on her
right wrist, the Garmin Forerunner 935 and Empatica E4 on the left wrist (the
Garmin is further up), the heart belt on her chest, and an eye tracker, as well a
web-cam and a Microsoft Kinect v2 camera facing her. As input possibilities, a
standard keyboard and mouse are attached, and a 24-inch monitor displays the
widely-used SDL Trados Studio 2017 translation environment.

Data Analysis Approach

We analyze the gathered data in a multi-step approach: Similar to the previous
study, we first analyze the subjective ratings provided by our participants, and
then estimate the subjective CL ratings based on a combination of different
features. Last, we use the approach by Vieira (2016) and investigate correlations
between our measures to understand how they relate to each other and how they
cluster together. One should note here that we analyze many more features than
Vieira (2016), so we aim to both reproduce and extend his findings. The goal
of the regression analysis is to be able to automatically infer the CL from the
raw sensor data, ideally using as few and as commonly used sensors as possible.
The multivariate analysis should then provide more insights into why some
measuring approaches perform well while others contribute little information.

For all analyses, we discuss the features in terms of the feature sets described
in Section 8.2.1: subjective, time, text, keyboard, body posture, heart, eye, and skin
features. Finally, we also investigate combinations of these sets.

Subjective Ratings & Sensor Correlations We start by reporting and analyzing
the subjective ratings provided by our participants. As this is our target measure,
it is important to understand the distribution of our dataset as well as inter-
rater differences. We further report correlations between measures produced by
different sensors, e.g., how similar is data captured by a heart belt compared to
wrist-based heart measurements, that would be easily applicable in practice?

Multi-Modal CL Regression Analysis This part is closely related to our pre-
vious study with CL students (see section 8.1), having the goal of automati-
cally gathering CL values for segments through different sensors. This is again
achieved by learning a function that fits our features to the subjective CL ratings
in range 1 to 9, which also captures inter-translator differences. Thus, we also
do not normalize our target variable, because the lowest rating assigned by one
participant is not necessarily comparable to the lowest rating assigned by another
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participant due to prior experience, which in turn could result in different physi-
ological responses. Thus, instead of potentially biasing our data by transforming
the target variable, we keep it as is. However, compared to our last analysis
we now also perform a comparison between models with a random effect for
participant and segment and those without such knowledge, as described in
further detail below. Apart from subjectively assessed CL we could also have
chosen quality or time measures as the target, however, as discussed in chapter 6,
quality and CL cannot be considered equal, and time could be traded off for
quality, thereby limiting findings based solely on these measures.

As before, we compare the different regression models based on different feature
sets against each other and to the a simple baseline always predicting the mean
subjective rating (SubjCLavg).

What is new, is that we compare two approaches for training regression models.

The first approach is almost identical to our last experiment, as it uses only the
above measures to predict SubjCL, and has no knowledge about which partici-
pant the data comes from or which segment was post-edited while recording the
data. Thus, it is a very generic approach that learns one set of parameters across
all participants, thereby exploring the feasibility of applying CL adaptations dur-
ing PE in practice, e.g. for automatically providing alternative proposals when
loaded. We again explore a variety of models that can represent different function
spaces that might be needed for the different feature sets, namely linear models
with different regularizers (a stochastic gradient descent regressor (SGD), a Lasso
model (Lasso), an elastic net (ENet), and a Ridge regressor (Ridge)), as well as
a non-linear random forest regressor (RF), all provided in the scikit-learn
library using the default parameters and feature normalization. This set is very
similar to our last study, except that we exclude the Support Vector Regression
(SVR) model60.

As a second approach, which is an extension to the first approach, we further
integrate linear mixed-effect models (LMEMs) using R (version 3.6.0, lme4 pack-
age version 1.1-21), as these can effectively capture inter-participant as well as
segment-dependent differences by adding a random effect for subject and a ran-
dom effect for item61. To make the comparison between LMEMs and the other
models fair, we also provide the scikit models with the participant and segment
ID; thus, all models can learn to act differently depending on this information.
While the normalization of the signal discussed above already normalizes the
data such that each participant’s average heart rate is at the same value, some par-
ticipants might still react more strongly to CL, e.g., one participant might increase
his heart rate by 10%, while another’s might increase by 20% when loaded. By
incorporating the participant and segment as a feature into the models, we ensure

60Since SVRs do not support our selected feature selection approach, and since it never performed
best in tests without feature selection, we decided to not use it for this experiment.

61Since the R package used for LMEMs does not support our feature selection approach either,
we decided to instead perform feature selection with a normal linear regression model with L2
regularization.
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that they can learn such individual difference. This is also a major distinction
from our last experiment, where we did not incorporate these measures. How-
ever, this approach of training the models is only relevant for strictly controlled
experiments, because in practice no two translators will PE the same segment.

To avoid over-fitting, all regression functions use regularization or averaging,
and we perform 10 by 1 and 5 by 2-fold stratified cross-validation (CV) as in
our last experiment. The stratification is important here as it is better suited for
an imbalanced distribution of the target variable (that we happen to have, see
Section 8.2.3). Naturally, every regression model is trained on the same folds,
to make results comparable. We kept MSE as our main metric, as it strongly
penalizes large errors, which are particularly undesirable for our goal. Before
passing a feature to a regression model, we apply a z-transformation to achieve 0
mean and unit variance. For combining individual features within a modality
or across modalities, we then use simple vector concatenation. As a feature
selection approach we use recursive feature elimination with CV (RFECV in the
scikit-learn) to decide on the amount of features to select.

Pairwise Correlations and PCA Vieira (2016) argues that “using a large num-
ber of different measures in the hope that together they will provide a more
accurate parameter might be an inefficient appraoch”, especially when the mea-
sures are correlated. Our above approach uses a well established feature selection
mechanism to select a good feature subset and thereby automatically reduces
redundancies and removes inconclusive features. However, this “top-down”
experimental approach still does not provide any insight into how all the differ-
ent features correlate and which features reflect the same underlying construct.
Furthermore, the above regression naturally is only interested in correlations to
subjective CL, which we selected as our target variable, and is not concerned
with correlations between different features themselves.

To target these shortcomings, Vieira (2016) inspects a correlation matrix visual-
izing pairwise feature correlations. To further investigate why some measures
seem to be more related to each other than others, suggesting that there is also
a great degree of redundancy involved, he then used a PCA. As Vieira (2016)
nicely puts it, “informally, PCA transforms a group of variables into a group
of orthogonal principal components (PC) containing linear combinations of the
original variables”. Usually a small number of PCs is enough to explain most of
the original data, which is especially important for our data consisting of a large
number of features.

To keep the reporting concise, we only report PCs that together explain 95% of
the variance, i.e., components capturing less then 5% variance are not plotted.
Since we have many more features than Vieira (2016), a plot including all features
would become very messy and unreadable. Therefore, we create a separate plot
per modality to investigate within-modality correlations and further report an
across-modality plot. For modalities with more than 5 features, we reduce this
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set based on the MSE a regression model trained solely on each single feature
would achieve in a 5 by 2-fold CV. While this does not give us a full picture, it
remains interpretable and provides interesting insights.

Participants and User Evaluation Procedure

The experiment participants were 10 professional translators (8 female), aged
28–62 (mean=40.4, σ=9.7). Half of them were freelance translators, while the other
half worked for a translation company. All of them were native Germans and
had studied translation from English. Their professional experience ranged from
3 to 30 years (mean=12.1, σ=3). All of them have worked with Trados SDL Studio,
which is the CAT tool we also used for our experiment. However, on average
they have used 4.4 distinct CAT tools (σ=2.1, min=1, max=9). On a 5-point scale
ranging from very bad to very good, they judged their knowledge of CAT tools as
good (mean=4.2, σ=0.9), their experience with Trados as good (mean=4.4, σ=0.7),
their general knowledge of translation as very good (mean=4.8, σ=0.4), and their
PE knowledge as good (mean=3.8, σ=1.0).

Identical to the experiment with translation students, after the data protection
form and demographics questionnaire, the professional translators were given the
same instruction how to PE to ensure similar editing behavior across participants.
We further allowed but did not require participants to look up terms in a corpus
or dictionary online. Before starting the actual PE process, they were given time
to familiarize themselves with the environment and then they each post-edited
the 30 text segments described above in random order while wearing all the
sensors. For one participant the USB hub we used broke after post-editing 9
segments, thereby reducing the amount of data gathered for this participant.

8.2.3 Results & Discussion

In this section, we present and discuss the results of each individual step of our
data analysis.

Subjective Ratings

All 9 CL ratings were used during the experiment; however, 90.3% of the ratings
were within the range 3 to 7 (inclusive) while the extreme cases were only rarely
chosen (see Figure 8.3). We also observe rating differences between post-editors,
with an average standard deviation across segments of 1.2 (minimum 0.8, maxi-
mum 1.8) on our 9-point scale. When asked after the experiment how demanding
it was overall, i.e., a retrospective overall judgement, the scores are very much
in line with the ratings given immediately after each segment, with a mean of
5.4 and a standard deviation of 0.8. In general, the rating distribution and the
inter-rater differences are strongly comparable to those of our previous study,
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were the extreme cases were rarely chosen. Note that we use these individual CL
ratings (without any aggregation on segment level) for the remaining analyses
to also capture inter-participant differences. Furthermore, we find 80 out of 151
cases where multiple participants rated the same segment as equally tough while
having an editing difference of more than 20 HTER. This again shows that strong
differences in editing behavior do not necessarily impact the CL.
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Figure 8.3: Segment distribution across subjective CL scale ranging from 1 =
“very very low mental effort” to 9 = “very very high mental effort”.

Sensor Correlations

We further investigated correlations between measures produced by different
sensors. The results can be seen in Table 8.5: While the heart rate and temperature
measures indeed correlate strongly, they still do not match exactly. We expected
this, since measuring at different positions and using different sensors will never
give exactly the same results. What we did not expect, however, is that the
RR intervals by the Empatica and Polar belt are only correlated to a medium
extent. We do assume the Empatica data to be of high quality as it satisfies
several regulatory compliances and was designed as a research device. However,
since the Polar device is worn at the chest, we had expected it to produce rather
accurate measures as well even though it is only a sports device.

Feature Spearm.’s ρ Pearson’s r Interpret.
RREmpatica vs. RRPolar 0.38 0.32 Medium
HRGarmin vs. HRPolar 0.81 0.71 Strong
SkinTempGarmin vs. SkinTempEmpatica 0.83 0.74 Strong

Table 8.5: Spearman’s correlation results between different features and subjective
CL ratings, all p < 0.01.
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Multi-Modal CL Regression Analysis

Without Including the Participant and Segment ID The results of the first
regression analysis approach, that is without passing the participant and segment
ID alongside the features to the model, are reported in Table 8.6. It shows the MSE
achieved in 1 by 10 and 5 by 2-fold CV, once for the baseline, and further for each
category of features described above. For each feature category, we report the
results achieved by a model trained on all features (‘ALL’) of that category, and
the results achieved by a model trained using feature selection (‘FS’). The features
are ordered by their regression performance (MSE) when training a model solely
on this single feature, as this is one (among many) measures of what this feature
contributes. Next to each MSE score, we report the type of model (e.g., Ridge).
Last, we also report the standard deviation of the 10 runs within 5 by 2-fold CV.

The first thing one should note when looking at Table 8.6 is that only Ridge and
Random Forest models were chosen, and that the results for 1 by 10-fold and 5
by 2-fold CVs are rather similar. We compare each 5 by 2-fold MSE score using a
univariate ANOVA with all models as conditions and calculate the contrasts to the
mean baseline as references. The ANOVAs violated the sphericity assumption but
still showed strong significance (p < 0.01) after Greenhouse-Geisser correction of
the degrees of freedom. Table 8.6 shows that all models are significantly better
than the mean baseline (after Bonferroni correction).

When looking at the individual results in Table 8.6, one can see that already this
baseline is actually quite good, with a MSE of 2.045 on a 9-point scale, which
comes from the rather normally distributed ratings. Among our considered
categories, text is the worst, followed by keyboard, body posture, and time, which
show similar results. Much better and more interesting results are obtained in the
three categories skin, eye, and heart measures, which again show similar results.
When combining multiple modalities, the results improve a bit further.

Including the Participant and Segment IDs Table 8.7 shows how the results
change when including LMEMs to the list of potential regressors and adding
the participant and segment ID as additional features to the other regression
models, both during training and testing. This allows the trained models to react
differently to different participants and segments, thereby losing generality but al-
lowing better model fits. This time only LMEMs and Random Forest models were
chosen, and again the 1 by 10 and 5 by 2-fold CV scores are roughly comparable.
We again use a univariate ANOVA (including Greenhouse-Geisser correction due
to a violation of sphericity) and find that all models are significantly better than
the baseline (after Bonferroni correction).

Comparison When comparing the results of Table 8.7 to Table 8.6, we see that
the results with participant and segment improved substantially for the time, text,

201



MSE
Features 1x10-CV↓(Reg.) 5x2-CV↓ (SD)
Baseline
SubjCLavg 2.045 (-) 2.045 (0.04)
Time Features
ALL: PeTime, LNPeTime 1.457 (Ridge) 1.487 (Ridge) (0.11)*
FS: PeTime 1.453 (Ridge) 1.490 (Ridge) (0.11)*
Text Features
ALL: TER, HTER, HBLEU, BLEU, SL 1.756 (Ridge) 1.764 (Ridge) (0.07)*
FS: TER, HTER, SL 1.736 (Ridge) 1.747 (Ridge) (0.07)*
Keyboard
ALL: PWR, APR 1.551 (Ridge) 1.577 (Ridge) (0.08)*
FS: PWR 1.554 (Ridge) 1.568 (Ridge) (0.07)*
Body Posture
ALL: HeadDist 1.471 (Ridge) 1.487 (RF) (0.11)*
FS: HeadDist 1.456 (Ridge) 1.474 (RF) (0.12)*
Eyes
ALL: SearchProb, FixAmount,
ICA, FixDur, SaccDur, Hilbert,
EAR, BlinkAmount, PupilDiameter,
NormFixAmount, NormBlinkAmount

0.965 (RF) 1.086 (RF) (0.08)*

FS: FixAmount, ICA, FixDur,
SaccDur, SearchProb, Hilbert, EAR,
PupilDiameter

0.918 (RF) 1.029 (RF) (0.09)*

Heart
ALL: NN50, pNN50, BVPMedAbsDev,
HR, SDNN, RMSSD, RR,
BVPMeanAbsDiff, BVPAmp, BVP

1.073 (RF) 1.130 (RF) (0.13)*

FS: BVPMedAbsDev, NN50, SDNN,
RMSSD, HR, RR, BVPAmp, BVP

1.004 (RF) 1.117 (RF) (0.11)*

Skin
ALL: SkinTemp, Ledalab,
FreqFrameGSR, GSR, FreqGSR

0.942 (RF) 1.148 (RF) (0.17)*

FS: SkinTemp, FreqFrameGSR,
Ledalab, GSR

0.858 (RF) 1.033 (RF) (0.14)*

Combined Features
ALL 0.857 (RF) 0.984 (RF) (0.15)*
FS: FixAmount, ICA, SaccDur,
NN50, SDNN, FixDur, RMSSD,
FreqFrameGSR, HR, HeadDist,
Ledalab, SearchProb, Hilbert,
SkinTemp, EAR, GSR, PupilDiameter

0.718 (RF) 0.886 (RF) (0.12)*

Table 8.6: Feature evaluation results without considering LMEMs/without
adding participant and segment. For 10 by 1 and 5 by 2-fold CV with standard
deviation (SD). Asterisk (*) in the right column indicates a significant difference
(p < 0.01) from SubjCLavg after Bonferroni correction.
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MSE
Features 1x10-CV↓(Reg.) 5x2-CV↓ (SD)
Baseline
SubjCLavg 2.045 (-) 2.045 (0.04)
Time Features
ALL: PeTime, LNPeTime 0.856 (LMEM) 0.886 (LMEM) (0.04)*
FS: PeTime 0.868 (LMEM) 0.891 (LMEM) (0.05)*
Text Features
ALL: TER, HTER, HBLEU, BLEU, SL 1.126 (LMEM) 1.219 (LMEM) (0.07)*
FS: TER, HTER, SL 1.121 (LMEM) 1.193 (LMEM) (0.04)*
Keyboard
ALL: PWR, APR 1.075 (LMEM) 1.158 (LMEM) (0.06)*
FS: PWR 1.055 (LMEM) 1.136 (LMEM) (0.06)*
Body Posture
ALL: HeadDist 0.890 (LMEM) 0.963 (LMEM) (0.06)*
FS: HeadDist 0.872 (LMEM) 0.896 (LMEM) (0.05)*
Eyes
ALL:SearchProb, FixAmount, ICA,
FixDur, SaccDur, Hilbert, EAR,
BlinkAmount, PupilDiameter,
NormFixAmount, NormBlinkAmount

0.924 (RF) 0.968 (RF) (0.07)*

FS: FixDur, SearchProb 0.882 (RF) 0.938 (LMEM) (0.09)*
Heart
ALL: NN50, pNN50, BVPMedAbsDev,
HR, SDNN, RMSSD, RR,
BVPMeanAbsDiff, BVPAmp, BVP

0.921 (RF) 1.057 (RF) (0.11)*

FS: HR 0.820 (LMEM) 0.859 (LMEM) (0.06)*
Skin
ALL: SkinTemp, Ledalab,
FreqFrameGSR, GSR, FreqGSR

0.860 (RF) 1.018 (RF) (0.16)*

FS: SkinTemp, GSR 0.816 (LMEM) 0.919 (LMEM) (0.16)*
Combined Features
ALL 0.801 (RF) 0.962 (RF) (0.12)*
FixAmount, ICA, SaccDur,
NN50, SDNN, FixDur, RMSSD,
FreqFrameGSR, HR, HeadDist,
Ledalab, SearchProb, Hilbert,
SkinTemp, EAR, GSR, PupilDiameter

0.703 (RF) 0.867 (RF) (0.13)*

Table 8.7: Feature evaluation results when considering LMEMs/adding partici-
pant and segment. For 10 by 1 and 5 by 2-fold CV with standard deviation (SD).
Asterisk (*) in the right column indicates a significant difference (p < 0.01) from
SubjCLavg after Bonferroni correction.

keyboard, and body posture categories. For the other modalities – eyes, heart, skin,
as well as combinations – the results are roughly comparable. Even though the
performance improved, the text features remain the worst category, followed by
the keyboard features. All other modalities now show similar results.
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We also perform pairwise comparisons between the feature selection models
of each individual category against the feature selected version of combinations,
which we report in Table 8.8. Note that these results are using the models without
incorporating participant and segment (Table 8.6), as we found these results more
interesting. For the pairwise comparisons we use the 5 by 2-fold CV results in
combination with a modified t-test (Dietterich, 1998) followed by Bonferroni-
Holm corrections.

As expected, the combined model is indeed significantly better than time, text,
keyboard, and body posture; however, it is not significantly better compared to eyes,
heart, and skin, which are already very good by themselves.

Features Test Statistics
Time vs. Combined t̃ = −4.06*
Text vs. Combined t̃ = −6.03*
Keyboard vs. Combined t̃ = −5.35*
Body Posture vs. Combined t̃ = −6.32*
Eyes vs. Combined t̃ = −0.98
Heart vs. Combined t̃ = −1.42
Skin vs. Combined t̃ = −1.34

Table 8.8: Pairwise comparisons between the feature selected models without
LMEM/without participant and segment (Table 8.6). * shows significance with
p < 0.05 after Bonferroni-Holm correction. t̃ is the test statistics for the modified
paired t-test (Dietterich, 1998).

Summary Summarizing, Tables 8.6 and 8.8 suggest that CL measurement with-
out special adaptations per participant and segment (Table 8.6) work best when
combining multiple modalities; however, using skin, eye, or heart measures also
works similarly well. The often used keyboard features based on typing pauses, as
well as time and body posture measures perform worse. The text metrics, which
include common quality measures, are the worst among our explored predictors
of subjective CL.

When the models can adapt to participant and segment (Table 8.7), the often used
text and keyboard features remain the worst; however, all other categories (time,
body posture, eyes, heart, skin, as well as combinations) now perform similarly well.

Pairwise Correlations and PCA

Similar to Vieira (2016), we analyze pairwise correlations between our measures
of CL. For each modality, we report a maximum of 5 best features, which we
compare to each other and to the subjective rating.

Figures 8.4, 8.5 and 8.6 depict the pairwise Pearson correlations alongside the
PCA loadings, as described above. Narrower ellipses indicate stronger correla-
tions; however, the correlation coefficient is also given numerically and encoded
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through coloring. Blue and upward-oriented ellipses indicate positive correla-
tions, while red and downward-oriented ellipses indicate negative correlations.
The PCA plot shows which feature loads on which PC. Here, the line thickness
and color shows the strength of the loading; blue continuous lines represent
positive loadings, while red dashed lines indicate negative loadings. We only
summarize the most interesting results, which are all statistically significant:

For the time features, we see that PeTime and LNPeTime correlate very strongly
and load on the same PC, but also that both show strong correlations to SubjCL.

For the text features, there expectedly are very strong correlations (-0.9) between
TER and BLEU and between HTER and HBLEU, where each pair also loads on
the same PC. Furthermore, strong correlations can be observed between TER
and HTER, as well as between BLEU and HBLEU.

For the keyboard features, we see a very strong correlation between APR and PWR,
however, both load on distinct PCs. PWR correlates more strongly to SubjCL
than APR, indicating that PWR is by itself a better estimator of SubjCL.

As expected, the most relevant eye features FixAmount, SaccDuracc, and FixDuracc

correlate by almost 1, load on the same PC, and strongly relate to SubjCL.

For the heart features, the correlations between NN50polar
acc , SDNNpolar

acc , and RMSSDpolar
acc

are again very close to 1, and the PCA plot nicely visualizes that they cluster
together. BVPMedAbsDev shows the strongest correlation to SubjCL.

Inspecting the most relevant skin features, we see very strong correlations between
FreqFrameGSR64,Empatica

avg and Ledaavg, as well as medium to strong correlations
between the frequency frame and SkinTempGarmin

acc features.

Most interestingly, for the combined features we can again see that SDNNpolar
acc and

NN50polar
acc , as well as FixAmount and SaccDuracc, correlate with almost a value

of 1. There also seems to be a strong link between the HRV measures and the eye
measures SaccDuracc and FixAmount. The PCA further shows that there is one
PC for the HRV measures, one for the ICA, and another one for the eye features
FixAmount and SaccDuracc.

Discussion

Overall, very good regression results of up to 0.7 MSE on a 9-point scale were
achieved by our regression models. This amount of error should be acceptable
for most applications scenarios discussed in chapter 6. While the 5 by 2-fold CV
results are often slightly worse, which might be because less training data was
seen, the results of 1 by 10 and 5 by 2-fold are comparable, and the very small
standard deviations indicate that the models are rather robust.

Without Passing the Participant and Segment When comparing the regression
results without adding participant and segment to our previous study, whose ap-
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Figure 8.4: Correlations and PCA for time, text, and keyboard modalities.
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Figure 8.5: Correlations and PCA for body posture, eye, and heart modalities.
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Figure 8.6: Correlations and PCA for the skin and combined modalities.

proach is almost the same apart from having fewer sensors and features, we note
a few similarities and differences: First of all, in the new experiment, we found
consistently better results across all modalities; however, already the baseline
yields better results on our dataset, which indicates that the ratings of our profes-
sional participants are a bit more stable around the mean. While the time features
in our last experiment were rather good, they are among the worst modalities
here. A reason might be that we considered many more features, that helped the
other modalities improve over the time feature. While in the last study the eye
features were by far the best among the three main categories eye, skin, and heart,
all three show similar results here. This could be due to the many newly added
skin and heart features. Whereas in both studies the combined approach leads to
the best results, the performance gains when combining multiple modalities were
much stronger in our first experiment, probably again because the three main
categories are already very good by themselves. That way, the combined approach
was not significantly better than eye, skin, or heart based approaches.
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So when we do not consider the individual participant and the segment s/he is
post-editing (Table 8.6 or our last experiment), we can achieve the best results
already only with our main categories, eyes, heart, skin, or by combining features
from several modalities. This is relevant for less controlled and more practical
applications, e.g., adapting the user interface to perceived CL, where it is impos-
sible to use participant and segment information, as ideally no two translators
should post-edit the same sentence (which would otherwise be contained in TM).

Passing the Participant and Segment In contrast, when we do consider partic-
ipant and segment (Table 8.7), modalities of lesser quality, like time, text, keyboard,
or body posture can also achieve good results. So considering who is editing what
seems to yield enough information to learn from when combined with these fea-
tures, while without considering participant and segment, the generalization is
impeded. This is probably due to a strong overfit to the participant and segment,
which simplifies the problem considerably. However, if the goal is to conduct a
controlled experiment, e.g., to investigate the impact of different sentence fea-
tures on subjectively felt CL, integrating participant and segment into the models
allows to also achieve valuable estimates with these other modalities. The above
experiment therefore also suggests that quality, keyboard, and time measures,
which are frequently used in the literature to estimate effort, only work well in
controlled settings.

Correlations and PCA While we cannot compare all our correlation and PCA
results to Vieira (2016), since we considered many more features, there is still
some interesting overlap: The time features in both studies correlated strongly
to SubjCL. Furthermore, the link between the PWR and SubjCL also seems
comparable, while that between APR and SubjCL appears weaker in our dataset.
However, the correlation between these two keyboard features is similarly strong
in both studies. The eye features FixAmount and FixDur also correlate to a similar
extent with SubjCL in both studies. To summarize, we could both reproduce
(except APR vs. SubjCL) and extend the findings by Vieira (2016).

The correlation and PCA especially revealed that many highly redundant features
were selected by the feature selection approach (e.g., the HRV measures). The
reason for this probably is their strong correlation to SubjCL; however, due to
the redundancy, it is unclear whether incorporating multiple such features really
helps. Therefore, we want to explore if handcrafting a set of features with fewer
redundancies, or using a more sophisticated feature selection approach than
RFECV, could boost performance further. As a simple example, the time features
which strongly correlate to SubjCL and improved the results in our first study,
were not selected for the combined model. While we only analyzed a few features
in terms of correlations and PCA, we also plan to investigate the link to the
non-selected features, as well as a PCA including more features from all different
modalities than the few reported here.
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Limitations

The results presented in this study are subject to the following limitations: Only
10 professional translators participated, resulting in a rather small dataset. Fur-
thermore, we did not perform a leave-one-subject-out cross validation, thus,
fine-tuning on new users might be required to achieve these results in practice.
Last, as our multivariate analysis showed, a more guided feature selection ap-
proach, potentially combined with a thorough hyperparameter selection, might
yield further improvements over the automatic “top-down” regression approach
relying on feature selection.

8.2.4 Conclusion

This study was again motivated by the goal to robustly measure CL during PE
and adapt to it. Compared to our last study, which already involved a large
variety of measuring approaches, we explored even more features, comprising
the largest set to date in the translation domain. The main novelties compared to
the last experiment were the additional analysis of the eye’s pupil diameter, as
well as using the Garmin Forerunner 935 and the Empatica E4 wristband and
adding further heart- and skin-related features.

Furthermore, we ran this study with 10 professional translators instead of trans-
lation Master’s students and report how well subjective CL can be predicted
depending on the various features: First of all, we find that models trained on
any of the investigated modalities are significantly better than a simple baseline.
When the models are unaware of which participant and segment the data belongs
to, eye, skin, and heart features, or a combination of different modalities, performed
best. In contrast, for regression models that can react differently depending on
participant and segment, the less well performing categories time, text, keyboard,
and body posture also achieved good results, probably due to overfitting on the
participant. While this finding is very interesting for controlled experiments,
it is less relevant for practical use, where no two participants should PE the
same segment. Overall, the trained models can estimate CL during PE without
interrupting the actual process through manual ratings with comparably low
error of at best 0.7 MSE on a 9-point scale. However, further data analysis is
needed to understand the required steps to achieve such results in practice.

We also report how strongly the different measures correlate and which features
cluster together, where we reproduce almost all the findings of Vieira (2016) and
extend them further by considering many more features.

This study thus contributed to our second research question by enhancing the
findings from the previous study through results based on professional trans-
lators, a wider range of features, and more in-depth analysis. Overall, we still
see that multi-modal sensor input helps estimate CL of PE, but that combining
enough measures from either heart, skin, or eye modalities also allows good CL
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estimation. The long-term goal to which these results contribute remains the
same: being able to decrease the perceived CL, and thereby stress and exhaustion,
during PE through the various adaptations discussed in chapter 6, which require
robust CL estimation during PE of MT.

8.3 Exploring the Cognitive Load Framework in E-Learning

We have now presented two studies using the CL framework to estimate per-
ceived CL during PE. Naturally, the same framework can also easily be applied
in other domains. To showcase this and to explore which measures are rather
specific to PE and which are rather general purpose, we ran another study in the
e-learning domain.

8.3.1 Why E-Learning?

The first and most obvious reason for choosing the e-learning domain as an
additional test-bed is that CL theory stems from educational psychology, so the
educational setting is probably the best researched area for CL measurements.
However, we wanted to stick to a setting similar to PE, with a single user in front
of a computing device, thus, choosing e-learning instead of learning in groups or
classrooms. Furthermore, the e-learning industry is continuously growing, with
a predicted compound annual growth rate of 7% until 2025 (Accuray Research
LLP, 2017), making it a highly interesting market.

Modern e-learning systems already offer a variety of customization possibilities,
including the possibility to work through the content in a self-chosen order or
speed. Recommendation engines support the customization process, however,
they often only consider the previous behavior of the current or other learners.
This neglects the user’s cognitive state, i.e., the cognitive load experienced, or
factors like the perceived stress, tiredness, boredom, or attention, which we
argue can strongly influence the content or speed that is appropriate for his/her
current state (see e.g., Vogel and Schwabe (2016)). Those factors are also given
appropriate consideration by human teachers in traditional learning, as they react
to their students’ needs and moods by asking follow-up questions or adding
additional explanations. Similarly, a cognition-aware e-learning system could
provide further clarifying contents when a high CL is detected, or decide to move
on to more complex topics when the CL drops. Taking this to the e-learning
domain, an application-oriented video showing a learned technique in practice
might be well suited when a user feels overloaded, while a complex technical
article could be overwhelming and therefore not effective in this situation. In
contrast, the same video might feel boring in another cognitive state, where
the technical article could be more appropriate. Furthermore, informing the
instructor about the learners’ cognitive states could help improve the learning
content and tailor it to individual needs.
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Thus, similar to CAT tools reacting to CL, a variety of adaptations of e-learning
systems, aiming to keep the learner in the optimal range of CL (Spüler et al., 2016),
would be possible if these systems could reliably estimate the cognitive state
of a user. As discussed before, plenty of approaches to measure cognitive load,
stress, etc. have been proposed in the literature and allow some form of cognition
awareness (Bahreini et al., 2016; Rodrigues et al., 2013; Shen et al., 2009). Often
the sensors used in these works are nowadays even integrated into consumer
devices like smartwatches, making the concepts feasible in practice. However,
the interplay between those individual sensors and the power of using multiple
modalities simultaneously in a multi-modal setup, remain underexplored.

In this study, we thus deploy our CL framework in the e-learning domain, thereby
exploring combinations of heart, skin, eye, body posture, performance, and sub-
jective measures. Our study uses a realistic e-learning setting, where participants
learn through videos and quizzes instead of using an unrealistic memorization
or mental calculation task which related works often use as a proxy for learning.
Based on the captured data, we investigate how well predictive models using
feature combinations from the explored modalities can predict intrinsic diffi-
culty as well as the perceived CL and difficulty. In particular, we analyze which
sensor modalities are more or less suitable for estimating CL, thereby guiding
researchers and developers of future cognition-aware e-learning systems and
allowing an in-depth comparison to our previous studies in PE of MT.

8.3.2 Analyzed Measures of Cognitive Load

To keep comparability to the PE study with professional translators (section 8.2)
high, we use almost identical features from our CL measurement framework
(chapter 7).

As subjective measures, we now ask participants for two ratings after each video
or quiz: For estimating subjective CL (SubjCL), again the commonly used scale
proposed by Paas and Van Merriënboer (1994) is utilized. Additionally, the
difficulty measure proposed by Kalyuga et al. (1998), which is a 7-point scale,
ranging from 1 (extremely easy) to 7 (extremely difficult), asking about the
difficulty of the task, is analyzed (SubjDiff). The reason for a second scale was to
also capture the concept of difficulty as proposed in the literature on instructional
design. While we could have adapted the answer possibilities of one scale to
the other, i.e., to have two 9-point scales, we decided to use both scales in their
original unaltered form, in which they have been validated and used for a large
variety of experiments.

For performance measures, we deviate from the PE studies as the task is different.
While the time required to watch a video is not relevant, due to the constant
duration of the video, we analyze the quiz time, where we expect more difficult
quizzes to require more time. Furthermore, the percentage of quiz questions
answered correctly is used as a measure of performance.

212



As for the behavioral measures, the distance to the head is captured by a Microsoft
Kinect v2 as in our last experiment, hypothesizing that learners come closer for
harder content. Since video tasks are rather passive and the quizzes require only
few clicks and no text production, we excluded the previously used keyboard
features from this analysis. As before, we also do not perform emotion recognition
based on images of participants’ faces since they worked poorly in the first study
and lead to privacy concerns.

For eye-based features, we again use data from a webcam and the Tobii 4C eye
tracker to capture the openness of the lids, blinks, fixations, and saccades, as
well as the probability of visual search (EAR, BlinkAmount, NormBlinkAmount,
FixAmount, NormFixAmount, FixDur, SaccDur, SearchProb). As in the last
study, we use the pupil diameter measures (PupilDiameter, ICAwave, ICAcount,
Hilbert). Thus, an identical set of eye features to our previous study with profes-
sional translators was used.

For heart measures, we also use an identical setup as in the study with professional
translators, capturing the heart rate from both the Polar belt and the Garmin
watch (HR), and using the Polar belt, as well as the Empatica wristband to capture
the RR interval (RR) and based on it various HRV (Rowe et al., 1998) measures
RMSSD, SDNN, NN50, and pNN50 (Shaffer and Ginsberg, 2017). Similarly, all
blood volume pulse (BVP) measures are also integrated as before (BVPAmp,
BVPMedAbsDev, BVPMeanAbsDiff).

Skin-based features, captured by the Microsoft Band v2 and Empatica E4
and Garmin Forerunner 935 are also identical to the last study, measur-
ing the galvanic skin response (GSR) and corresponding frequency domain
features (FreqGSR, FreqFrameGSR), Ledalab features (Ledaavg, LedaMaxDefl,
LedaTTP.nSCR, LedaTTP.AmpSum, LedaTTP.Lat, LedaCDA.nSCR, LedaCDA.AmpSum,
LedaCDA.Lat, LedaCDA.SCR, LedaCDA.ISCR, LedaCDA.PhasMax, LedaCDA.Ton), and
skin temperature (SkinTemp).

In terms of analyzed measures, the difference to the previous study in section 8.2
is thus merely that no typing measures are used, and that slightly adapted sub-
jective and performance measures are employed. The remainder is kept identical.
However, the captured continuous signals are processed slightly differently. In-
stead of transforming the normalized data per content into 6 features, we now
only transform it into the 5 features average, standard deviation, minimum, max-
imum, and range (max−min). Thus, we do not use the accumalated values as a
feature, as these could leak information about the time, and time itself could re-
veal the content, as the videos chosen for the different levels of difficulty slightly
differ in duration. Given all our single features and calculating the 5 subfeatures
for the continuous ones, we analyze 202 features overall.

We also again manually inspected the data distribution per content item and
participant for outliers and overall data quality. Values were filtered according to
visual inspection and related literature: Data above 100000 kΩ for the raw skin
resistance, as well as Polar RMSSD above 300, SDNN values above 250 (van den
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Berg et al., 2018), and finally Polar HR and RR samples which fall outside the
acceptable 50–120 beats per minute or 500–1200 ms ranges were removed (Shaffer
and Ginsberg, 2017). Here, the HRV filtering is even more strict than in the
previous study, while the other filters are identical.

8.3.3 Procedure, Apparatus, & Content Used

Using this feature set, we explore approaches for estimating CL in e-learning. As
before, the study was approved by Saarland university’s ethical review board.

Overview

For the study, we use a Moodle62 environment, as it is one of the most widely
used open-source e-learning platforms. After signing a data protection form and
granting permission to use the collected data, participants are asked to fill out a
quick pre-questionnaire. Then, they go through six pairs of mathematics videos
and corresponding quizzes in counter-balanced order. After each quiz, there is a
small break task and at the very end, a final questionnaire is filled out.

Pre-Questionnaire

The initial questionnaire captures demographics, previous e-learning experience,
and information about last night’s sleep quality and length, already performed
actions since waking up on the day of the study, as well as perceived exhaustion
and tiredness. Last, the math background of the participants is captured to (a)
confirm that they match our targeted group (see Section 8.3.4), and (b) to see if
effects found might depend on differences in prior knowledge.

Apparatus

Then the learner is equipped with a Microsoft Band v2 on her right wrist, a
Garmin Forerunner 935 sports watch and an Empatica E4 wearable on the left
wrist (the Garmin is further up), a Polar H7 heart belt on her chest, and a Tobii
eye tracker 4C with Pro SDK, as well as a web-cam and a Microsoft Kinect v2
camera facing her. As input possibilities, keyboard and mouse are used, and a
22-inch monitor displays the Moodle environment. Thus, an identical setup to
the previous PE study except for a slightly smaller screen and of course a Moodle
environment instead of SDL Trados Studio for the task is used.

62https://moodle.de/
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Videos

We chose 3 mathematical topics for the experiment: vectors, integration, and
eigenvectors. For each topic two videos are presented, one considered easy as it
is part of the curriculum for the high school certificate, and one considered hard
as it is part of the university’s “mathematics for computer scientists” curriculum.
Note here that this distinction into easy/hard is based solely on the concept
of intrinsic CL, while extraneous and germane load also depend on how the
material is taught (Sweller et al., 1998). We aimed to make the teaching style as
comparable as possible by using videos from the popular German math Youtube
channel “Mathe by Daniel Jung”63, thereby ensuring the videos to have the
same speaker, presenting in a very similar fashion, being filmed from the same
perspective, etc. The length of the videos is roughly 5 minutes each (mean=312s,
min=247s, max=368s). After each video, participants quickly assess their CL as
well as the content difficulty on the two rating scales for SubjCL and SubjDiff
(see Section 8.3.2).

Quizzes

Afterwards, and similar to Ishimaru et al. (2017), participants take a multiple
choice quiz of 2 to 4 questions on the previously watched content, testing whether
they understood what they saw. In contrast to the videos, which are consumed
rather passively, the quizzes ensured that participants had to actively work. The
quizzes were created by us, then refined after discussions with two students
matching our participant profile, and afterwards tested in a pre-study with two
participants. While we cannot guarantee that the quizzes are didactically 100%
comparable, the question design and the iterative testing aimed to make the
quizzes as consistent as possible. Participants also had to rate each quiz on the
same two subjective scales as the videos (see Section 8.3.2).

Break Task

Following each quiz, participants had to engage in a break task to limit the
interference between content items. The task encompassed connecting numbers
drawn on paper in increasing order (see Vernon (1993)) and verbally stating each
number while drawing, to clear both the visual as well as the verbal working
memory (see Baddeley and Logie’s (1999) model of working memory).

Post-Questionnaire

At the very end, participants had to fill in a final questionnaire which again
captured tiredness, stress, and exhaustion, as well as motivation, to be compared

63https://www.youtube.com/channel/UCPtUzxTfdaxAmr4ie9bXZVA
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to these factors before the experiment, thereby analyzing tiredness effects. Fur-
thermore, participants had to judge the relative differences in difficulty between
the three content topics.

8.3.4 Data Analysis Results & Discussion

For the data analysis, we first analyze the questionnaire results and look at
the subjective ratings and time required for individual content items, thereby
validating that the chosen method for data acquisition works as planned.

Then we analyze how well our three main metrics, (1) subjective CL (SubjCL,
regression in range 1 to 9), (2) subjective difficulty (SubjDiff , regression in range
1 to 7), and (3) intrinsic difficulty (IntrinDiff , binary classification whether the
content is part of the university’s or high school curriculum), can be estimated
based on the captured sensor data. Analysis (1) here is thus identical to our last
experiment on PE of MT.

The last part of the analysis aims to better understand which feature modalities
consistently perform better or worse than others, thereby providing suggestions
on how to implement cognition-aware e-learning systems in practice. For this, we
present results from multiple analyses, including intraclass correlation coefficients
and an analysis of how the performance of the predictive models changes when
we leave out different modalities.

Participants and Questionnaire Results

Overall 21 students, aged 20 to 33 years (mean=25.2), participated (m=17), 9
participants at the end of their Bachelor’s studies, while 12 were within their Mas-
ter’s studies. Roughly half (9 participants) described their e-learning experience
as rather good or good and used platforms like Moodle, Udacity, or Coursera.
To ensure a comparable background, we required all participants to be enrolled
in a computer-science-related course of study, and to have already successfully
passed the mathematics lectures covering our selected topics. We thereby ensure
that the participants’ background in the selected topics is comparable. Further
requirements, e.g., not having taken any additional math-related lecture, would
have limited the amount of matching participants too strongly, therefore, we only
captured such lectures instead of imposing further restrictions. Furthermore,
participants had to self-assess their background in the three chosen topics on
5-point scales, where they claimed to have the most prior knowledge for the
topic of vectors (mean=3.38, σ=0.81), closely followed by integration (mean=3.14,
σ=0.85), and last, eigenvectors (mean=2.67, σ=0.97). In the post-questionnaire at
the very end, participants were asked to rate the three topics in terms of difficulty
on a 7-point scale: Vectors were rated the easiest (mean=2.19, σ=1.12), followed
by integration (mean=3, σ=1.18), and eigenvectors (mean=3.05, σ=1.28), where 3
corresponds to “rather easy”. According to a univariate ANOVA for the three
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topics, vectors are significantly easier than the other two topics, which are on the
same level (F(2,40) = 4.84, p < .05). This means that we should also investigate
each topic separately and not only analyze the differences between all easy and
all hard content items. Using an ANCOVA to test if these differences only come
from a higher prior knowledge in the topic of vectors shows that this is not the
case (F(2,18) = 0.37, p = .693 for interaction between topic and prior knowledge).

The current tiredness (mean=2.57, σ=0.98), exhaustion (mean=2.05, σ=0.87), and
stress (mean=2.0, σ=0.95, all ratings on a 5-point scale) were in an acceptable
state at the beginning of the experiment, probably since the previous activity was
not considered strenuous (mean=1.67, σ=0.91, all ratings on a 5-point scale). The
corresponding values after the experiment (exhaustion (mean=2.29/5, σ=0.78),
stress (mean=1.95/5, σ=0.97), and tiredness (mean=2.58/5, σ=0.96)) showed
no significant differences from the ratings before. This, combined with the
rated demand of the experiment (mean=3.57/5, σ=0.81), shows that the data
should not be substantially distorted by tiredness effects. The post-questionnaire
further showed that participants had a high motivation to follow the videos
(mean=3.81/5, σ=1.08) and a very high motivation to perform well on the quizzes
(mean=4.48/5, σ=0.75).

Content-Wise Ratings and Quiz Results

Content-Wise Subjective Ratings Figure 8.7 shows the CL and difficulty rat-
ings for the quizzes and videos of each content item. While the differences across
all topics, as well as within the topics vectors and eigenvectors, are clearly vis-
ible and significant (all p < .01), the integration content did not impose any
statistically significant difference in perceived CL or difficulty.

Correlations of CL & Difficulty CL and difficulty ratings correlate significantly
(all p < .01) and strongly for all contents, with Pearson correlation coefficients
between .58 (for the easy integration videos) and .89 (for the easy integration
quiz). Thus, participants considered the two constructs as highly similar.

Inter-Rater Differences We analyze inter-rater differences by considering the
standard deviation across all ratings per video/quiz content. The results show
that the average standard deviation is 1.34 (min=1.14, max=1.56) for video CL,
1.16 (min=0.73, max=1.71) for video difficulty, 1.47 (min=1.19, max=1.74) for
quiz CL and 1.11 (min=1.00, max=1.25) for quiz difficulty. Thus, the inter-rater
differences between videos and quizzes are very comparable, especially when
considering the 9-point vs. 7-point rating scale.

Quiz Time & Performance Table 8.9 shows that strong differences in quiz times
exist between the content items and that for all three topics, the quiz time was
higher for the harder content. The average percentage of correct answers to
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Figure 8.7: Subjective CL and difficulty ratings.

the quizzes was lowest for the eigenvector quizzes, while the other two topics
were comparable. On all three topics students indeed performed better on
quizzes corresponding to simpler videos; however, the differences are very small,
showing that such performance measures themselves do not always work.

Discussion Overall our participants had comparable backgrounds in the ex-
plored mathematical topics and the data should not be substantially distorted
by tiredness effects. Furthermore, and as anticipated, there is a significant differ-
ence between easy and hard content for both videos and quizzes in terms of CL
and difficulty ratings except when considering the integration topic individually.
Thus, we should also investigate each topic on its own. Furthermore, we see a
strong correlation between CL and difficulty, indicating that participants perceive
the two constructs as very related. While participants indeed required more time
for the quizzes on hard content, the percentage of correct answers was rather
comparable between easy and hard quizzes.
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Integration Vector Eigenvector
Easy Hard Easy Hard Easy Hard

Time 88 (31) 129 (49) 119 (53) 199 (81) 93 (35) 174 (103)
Perf. 93 (18) 91 (15) 94 (16) 87 (20) 85 (18) 81 (24)

Table 8.9: Quiz time (in seconds) and performance (% of correct answers) mean
and standard deviation (in brackets) for the different content items.

Predictive Models

We now aim to use the various captured measures to predict the demand imposed
by the content as defined by our three measures IntrinDiff , SubjDiff , and SubjCL.
After looking at correlations between features and these measures, we investigate
how to best select a subset of the implemented features and which models are
most suitable for these classification and regression tasks. Then we train the
actual models and discuss their respective results. The regression problem of
predicting SubjCL is thus identical to our previous two studies.

Correlation to Target Variables We analyze how strongly the individual fea-
tures correlate with our target variables. Since we have lots of features and 3
different target variables, inspecting each individual correlation is unfeasible.
Instead, we look at the highest correlations for both videos and quizzes, per topic
and across topics.

Across videos, correlations are rather weak, where the maximum correlation co-
efficient of 0.2 was achieved for SubjCL (0.18 for SubjDiff and 0.14 for IntrinDiff).
However, for the individual topics, we get much better results: for vectors the
best correlations are within 0.38 and 0.44 for the 3 target measures, for integration
within 0.39 and 0.43, and for eigenvectors between 0.30 and 0.36. For the quizzes,
correlations are much higher, both across all topics (between 0.38 and 0.42) and
within topics, with the highest correlation coefficients between 0.48 and 0.52 for
the vectors, 0.39 to 0.52 for integration, and 0.42 to 0.48 for eigenvectors.

Feature Amount & Model Selection This section describes the experiments
conducted to determine an appropriate model as well as an ideal number of
features to use for training predictive models on our data. As a feature selection
approach, we use recursive feature elimination with cross-validation (RFECV
in scikit-learn) as it turned out to give better results than other feature
selection approaches that we explored and makes results comparable to our
previous study. As possible numbers of features, we test values ranging from 5 to
100 with an increment of 5. As for machine learning models, which also influence
the number of features to select, we test the following models: linear models
with different regularizers, namely a Logistic Regression, a Stochastic Gradient
Descent regressor, a Lasso model, an Elastic Net, and a Ridge regressor, as well as
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a non-linear Random Forest regressor, all provided in the scikit-learn library.
We further integrate linear mixed-effect models (LMEMs) using R (version 3.6.0,
lme4 package version 1.1-21), as these can effectively capture inter-participant
differences by adding a random effect for subject and/or content64. These are
again the same models we explored for CL estimation in PE, except that we
added classification models for predicting IntrinDiff .

For each model and feature amount combination, we test different hyperparame-
ter settings of the model to get its best performance on that number of features65.
Note that this is not an exhaustive search in the hyperparameter space but rather
a heuristic-based approach in searching for good hyperparameters. Finally, we
plot all models’ performances for CL rating, difficulty rating and intrinsic diffi-
culty, once for videos and once for quizzes. This hyperparameter tuning step is
thus an extension to our data analysis approach from the previous studies.

Across all 6 cases we get comparable results: For the classification case (IntrinDiff),
the best results were achieved using Logistic Regression or LMEM models, espe-
cially for a small amount of features. For regression (SubjDiff , SubjCL), LMEM
and Ridge performed best, showing that linear models seem to perform well on
our data. Note that in the study with professional translators, LMEM, Ridge, and
RandomForest were frequently chosen. Regarding feature amount, the range of
30 to 35 features gave good results across all 6 analyses. Since fewer features help
interpret the results, we decided to use RFECV with 30 features in the following.
While both linear models and LMEMs perform equally well in this preliminary
analysis, Ridge and Logistic Regression are even simpler than LMEM, giving
better generalization due to less participant dependence, which is why we use
them in the remaining analyses.

To avoid overfitting, a 10-fold cross validation was used, and the best hyperpa-
rameters determined by grid search, namely Ridge regression with α = 2 for
regression, and Logistic Regression using L2 normalization and C = 1, were
chosen. As features, we use all features presented in Section 8.3.2, with a few
exceptions: Since the subjective measures are our target variables, we do not use
them as predictors. Furthermore, we exclude the performance measures, as these
exist only for the quizzes and not for the videos, resulting in a total of 202 features.

64Since the R package used for LMEMs does not support our feature selection approach, we
instead perform feature selection with a Ridge model for regression and Logistic Regression for
classification. For classification, we did not add a random effect for item (in our case the video/quiz)
to the LMEM, as this would have trivially resulted in 100% accuracy. For the regression case,
however, we did add a random effect for item as well. Thus, the LMEM approach uses the above
measures to predict intrinsic difficulty, SubjCL, and SubjDiff , but additionally knows which
participant (and content) the data comes from. In contrast, the scikit-learn models cannot
react differently depending on participant or item.

65For SGD regressors, we explore L1 ratios of 0.15 and 0.5; for Lasso models alpha values 1, 2,
and 10; for ElasticNet alpha values of 0.5 and 1 in combination with L1 ratios of 0.25, 0.5, 0.75; for
Random Forests (both for regression and classification) we explore 10, 20, 30, and 50 for numbers
of estimators and a maximum depth of None, 4, 8, and 12. For Ridge models we explored alpha
values of 0.5, 1, 2, and 10; for SGD classifiers, alpha values 0.0001, and 0.01, with L1 and L2
regularization; for Logistic Regression C values of 0.5, 1, and 2, both with L1 and L2 regularization.
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Furthermore, if every entry for a whole feature contains the same value, we drop
it (which happened for 3 “minimum” features). If due to a sensor failure some
data values of a feature are missing, we replace them by the participant’s mean
value for that feature (if available), or by the global mean (if no data exists for a
particular feature for that participant), which happened 5 times. Furthermore,
we apply a z-transformation to achieve 0 mean and unit variance. For combining
individual features within a modality or across modalities, we then use simple
vector concatenation.

Classifying Intrinsic Difficulty Using the settings described above, we train
models classifying IntrinDiff , i.e., binary classification. Figure 8.8 depicts the
accuracy achieved by the Logistic Regression models in comparison to a simple
baseline always predicting ‘easy’ (achieving 50% accuracy). As can be seen,
distinguishing easy from hard quizzes based on the sensor data works very well
for the quizzes (80-90% accuracy), both across topics and within topics. For the
videos, however, only around 70-75% accuracy is achieved for the vector and
eigenvector topics as well as across topics. A reason could be that the videos
are consumed only passively, where sensor data might be less reliable. This
difference is also visible in the correlations above (Section 8.3.4), where higher
coefficients were found for quizzes than for videos. For the integration videos,
very high classification results were achieved, probably due to some artifact in
the data, for which we currently do not have a concrete explanation. One should
note here that these results were achieved using feature selection on all available
features; therefore, section 8.3.4 explores how results change when only single
modalities are used.
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Figure 8.8: Classification of intrinsic difficulty.

Regression for Predicting Subjective Difficulty and Cognitive Load Next, we
check the MSE for the regression models predicting SubjDiff and SubjCL for
both quizzes and videos in comparison to simple baselines always predicting the
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mean value of the corresponding rating, as depicted in Figure 8.9. For each topic
individually, very large percentage gains are achieved over the baseline; across
quizzes the prediction also yields good results, while across videos, only marginal
gains were achieved. A potential explanation might be that the differences when
passively watching videos are less well represented in the physiological data
than those that appear when actively working on the quizzes, especially when
adding the variability of the different topics instead of comparing content within
a topic. Section 8.3.4 also shows that the correlations across videos are much
lower than within topics or across quizzes, explaining the bad results in this
particular case. It is also interesting that the prediction of SubjCL and SubjDiff
also works for the integration topic, where the subjective differences were not
large, which again can be explained by the existing correlations presented in
paragraph 8.3.4. Overall, the final MSEs found are very low (except for the across
videos-case), indicating that within content topics one can estimate the imposed
demand very well. Thus, we see that similar to our studies on CL estimation in
PE of MT, SubjCL can also be estimated with low error in e-learning.

All Quizzes

Integration Quizzes
Vector Quizzes

Eigenvector Quizzes
All Videos

Integration Videos
Vector Videos

Eigenvector Videos
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
SE

2.673

1.821

3.67

2.522
2.917

1.905

3.352
3.05

0.696
0.25

0.651 0.612

2.712

0.569 0.442 0.504

Baseline
Ridge Regression

(a) CL

All Quizzes

Integration Quizzes
Vector Quizzes

Eigenvector Quizzes
All Videos

Integration Videos
Vector Videos

Eigenvector Videos
0.0

0.5

1.0

1.5

2.0

2.5

M
SE

1.594

1.156

2.105

1.486

2.154

1.384

2.134

2.562

0.616

0.287 0.318 0.363

1.67

0.32
0.185

0.638

Baseline
Ridge Regression

(b) Difficulty

Figure 8.9: Regression performance for SubjCL and SubjDiff .

222



Discussion Overall, the analysis shows that using roughly 30 features together
with Ridge/Logistic Regression is a reasonable choice for our dataset. Further-
more, for both the classification and regression case, results for the quizzes are
better than for the videos, which we believe comes from the higher degree of
activity while solving quizzes than while watching videos. This in turn better
differentiates the physiological data. Note that the PE setting also shows such
a higher degree of activity and is thus closer to the quiz than to the video case
here. Therefore, using feature selection on all modalities simultaneously proves
to work very well for the quizzes for binary classification of IntrinDiff and for
all regression cases except for predicting across videos. However, note that the
limited amount of data might have introduced some bias, even though the results
look consistent.

Modality Analysis

Now we have gained some insight into how well the three target measures
can be predicted for the different content items. In this section, we aim to
understand which feature modalities contribute how strongly to the models,
thereby providing suggestions on how to implement cognition-aware e-learning
systems in practice. This analysis thus has a similar goal as our previous studies in
PE: investigating which modalities are more or less suitable and if a multi-modal
approach is beneficial.

Modality Correlations to Target Variables To estimate the direct link between
the modalities and the 3 target variables, we analyze the 10 highest correlating
features within the 8 cases (across quizzes/videos, within each quiz/video). Of
these in total 240 (3*10*8) features, 113 are eye features, 68 heart features, 53 skin
features, and 6 body posture features, suggesting that eye features perform best,
followed by heart and skin measures.

Naturally, this approach has some limitations: the same feature could count up
to 24 times (to all target variables of all 8 cases), and there is a different number
of features per modality. However, this initial analysis captures the direct link to
the target measures independent of there being even more irrelevant features in
the modality, and independent of linear dependency and thereby redundancy of
multiple features. Nevertheless, to also investigate the predictive power, further
analyses are presented in the following.

Modalities Selected through Feature Selection We analyze the features se-
lected among all possible features to see if measures from some modality tend
to be selected more or less often by our feature selection approach. We compare
this among the total of 24 tasks (3 target measures times the 8 cases: across
videos/quizzes and within the 3 topics each with video/quiz) for which we train
our models. To better analyze the selected feature set, we count which individual
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features are selected most often. Then we check which modalities these highly
selected features belong to. This shows that eye and heart features are selected
most often (up to 17 out of 24 times), showing the importance of these features.
In contrast, skin and body posture features are maximally selected 7 times, and
can therefore be considered less important.

Intraclass Correlation Coefficient Apart from a high correlation to the target
variables and being selected by the feature analysis, it is also interesting to an-
alyze the degree to which participants resemble each other regarding a given
feature. For this, we use the Intraclass Correlation Coefficient (ICC). It ranges
between 0 (chance agreement) and 1 (perfect agreement) and gives “an indication
of the extent to which different [participants] produce the same values of a given
measure when exposed to the same [conditions]” (Vieira, 2016). It therefore indi-
cates features that already generalize well from a small number of participants.
According to Koo and Li (2016), values below 0.5 can be considered as ‘poor’,
values between 0.5 and 0.75 as ‘moderate’, values between 0.75 and 0.9 as ‘good’,
and everything above 0.9 as ‘excellent’.

Overall, only 2.5% of the features can be considered ‘excellent’, 3.5% as ‘good’,
27% as ‘moderate’, and the majority of 67% as ‘poor’. This is particularly in-
teresting because the investigated measures were all proposed in the literature
and used in CL studies, which usually do not report the ICC and mostly have
a similar or even smaller amount of participants. Comparing the values to one
of the few papers by Vieira (2016) that also reported ICC values on multiple
modalities, we find that his 7 explored features were all in the range 0.25 to 0.6,
and thus also ‘poor’ to ‘moderate’ according to Koo and Li (2016). The high
amount of features in the ‘poor’ category can also be explained by the fact that
not all of the 5 features calculated on top of continuous signals (min, max, mean,
σ, range) consistently yield good ICC values. Furthermore, it can be seen as an
explanation for why selecting 30 features already gives good results.

In terms of modalities, again eye features perform best, comprising 100% of the
‘excellent’, 57% of the ‘good’, and 11% of the ‘moderate’ features. Between heart
and skin there does not seem to be a clear winner: heart features make up only
14% of the ‘good’ but 48% of the ‘moderate’ features, whereas skin yields 29% of
the ‘good’ and only 11% of the ‘moderate’ features. All body posture features are
within the ‘poor’ category.

Prediction Performance of Different Modalities To get more insight into the
classification/regression performance that can be achieved through the different
modalities (heart, skin, eyes) and combinations thereof, we train models on
the combined modalities and on subsets of the modalities. Thus, as in our last
studies on PE, we use the predictive power of the modalities as a proxy for
their suitability of CL estimation. We ignore body posture features here, as the
performance was very poor.

224



Figure 8.10 shows the results achieved compared to the baseline reported above,
each plot containing a group for SubjCL, for SubjDiff (both MSE), and for
IntrinDiff (as accuracy). The MSEs for SubjCL are higher than those for SubjDiff ,
as the subjective scales defining the target variable were 9- vs. 7-point scales. Note
that this analysis was done across all quiz contents; the corresponding analysis
across all video contents is omitted, because using all modalities across videos
already resulted in only marginal gains compared to the baseline (see Figure 8.9).
The resulting plot therefore did not provide further insights and is omitted for
space reasons.
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Figure 8.10: Regression performance in terms of MSE (SubjDiff and SubjCL) and
classification accuracy (IntrinDiff) for prediction across all quiz contents when
using only features from certain modalities.

As can be seen in the figure, the multi-modal approach is consistently better
than single modalities; however, the combination of eye and heart features is
also comparably good. Furthermore, we note that there is a trend that heart and
eye features perform better than skin features, which can also explain why the
combination of the two outperforms the modality pairs containing skin.

Discussion The various sub-analyses conducted to see which modalities per-
form better and worse, some focusing on correlations, others on predictive power,
consistently show that eye features perform best, followed by heart, then skin,
and last body posture. Combining two modalities improves results compared to
single modalities, where eye and heart features combined performed best. We
thereby extend the findings by Naismith and Cavalcanti (2015), who showed that
eye features are more reliable than cardiovascular features in medical training,
by additionally considering skin features and combinations of modalities.
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8.3.5 Conclusion

This study with 21 participants has explored our CL measurement framework in
e-learning, where it also comprised the most diverse set of features from a variety
of modalities. We used a rather realistic e-learning setting relying on videos
and quizzes instead of an unrealistic mental calculation task as done in many
related works. With the data captured in this setting, we show that classifying
intrinsic content difficulty works better for quizzes, where participants actively
solve problems, than for videos, which they passively consume. This quiz case
is thus also more related to PE of MT, where translators also actively engage
with the text instead of passively consuming it. Our classification results are
roughly comparable to Borys et al. (2017), who achieved up to 73% in a trinary
classification task (no-task, low CL, high CL), but used a much less realistic
setting where participants had to perform mental calculations instead of learning
through videos and quizzes. It is also interesting that even though we did not
use EEG measures, the combined power of multiple modalities gives comparable
results. Regression analysis for predicting the subjectively reported level of CL
and difficulty also works with very low error within content topics. Among the
explored feature modalities, eye-based features yield the best results, followed
by heart-based and then skin-based measures. Furthermore, combining multiple
modalities results in better performance compared to using a single modality,
which is an overall trend that we have also seen for PE of MT. The presented
results can guide researchers and developers of cognition-aware e-learning envi-
ronments by suggesting modalities and features that work particularly well for
estimating difficulty and CL. Furthermore, the results suggest that adaptations
like content recommendations, break proposals, or speed adaptations would be
feasible using a multi-modal approach. One should however note that the data
was captured from only 21 participants learning 6 mathematical contents, so
further studies should be conducted in different learning domains.

This study also contributed to our second research question on the use of multi-
modal sensing devices for CL estimation. However, instead of focusing on our
main application area of PE, we explored in an in-depth analysis if our approach
also works in another domain. We chose e-learning because CL theory originated
in the educational context in which e-learning offers a similar setting to PE with
one individual in front of a computer. Here, we see that our general framework
also works in this domain, and further that multi-modal combinations reduce
prediction errors, but also that eye, heart, and skin features already offer good
results. We are thus optimistic that our CL estimation framework can indeed
be used for measuring and in the long run reducing CL through adaptations
during cognitively challenging tasks like PE or learning. Apart from a feasibility
analysis, it is however also important to understand which of the various sensing
devices users have reservations about for the purpose of CL adaptations. This is
what we will investigate this in the next chapter.
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Chapter 9
Privacy Concerns Regarding
Cognitive Load Adaptations

The previous chapter explored our CL measurement framework in three studies
and showed that cognition-aware PE or cognition-aware e-learning is overall
feasible, even though further steps are required to implement the concept in
practice. Similar to these studies, the related literature has mainly dealt with
conceptual implications and technical possibilities to model the cognitive state,
without considering whether users would also accept being monitored by the
sensors for this purpose. Some works investigated privacy perceptions for wear-
ables, however, no systematic evaluation of the users’ privacy concerns regarding
cognition-aware interfaces exists, which is what this chapter contributes. We
mainly focus on the e-learning domain again, for which it is easier to find partici-
pants (compared to PE). However, the results are mostly not specific to e-learning,
but rather general and thus also interesting for PE within adaptive CAT tools.

This chapter is based upon Herbig et al. (2019d).

9.1 Method

To gather feedback on the user acceptance of cognition-aware e-learning systems,
we conduct an online survey with a variety of potential e-learning users. The
evaluation has been approved by the university’s ethical review board as well as
the data protection officer and consists of the following blocks:

Demographics & Background The survey starts by asking about the partici-
pants’ demographics and their usage of e-learning.
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Willingness to Disclose Sensor Data (A) Then, we ask about participants’ will-
ingness to share sensor data with an unspecified application, i.e., without provid-
ing the context of e-learning. The 4-point scale asks whether they could imagine
sharing the data, ranging from “not at all”, to “would rather not”, “probably
would” and “completely”. This question always appeared before B (see below),
to receive replies that are not biased by the context of e-learning. Apart from a
different participant sample, these results are of a general nature and therefore
also practically applicable to PE.

Required Performance Improvements (B) After explaining that such data
could be used to detect the cognitive state for adaptive e-learning, we let par-
ticipants judge how big an improvement (in terms of faster learning or making
fewer mistakes) would be necessary for them to disclose the individual sensor
data, ranging from “none” to “small”, “moderate”, “strong” and “immense” im-
provements. This can be seen as a similar approach to Acquisti et al. (2013), who
investigated the amount of money necessary to share otherwise private data in
retailing. Note that the decision to formulate both questions positively (without
artificially negating one), leads to the right-most value of B being related to the
left-most value of A.

Sensors We use the following list of sensors, which covers a wide (yet incom-
plete) set of approaches for context awareness and cognitive load detection: heart
rate, skin resistance, skin temperature, respiratory rate, body posture, blood
pressure, typing/mouse/touch behavior, eye movements and blinks, pupil di-
ameter, facial expressions, steps per day, mode of locomotion (e.g., in a vehicle),
surrounding noises, ambient brightness, and location.

Adaptation Ideas & General Feedback Last, we ask participants for ideas on
how e-learning tools could adapt to the users’ states and what their general
attitude towards this idea is. These open-ended answers are clustered based on
manual coding. Even though the methodology is different (survey vs. interview),
the goal is similar to chapter 6, namely to develop adaptation ideas and analyze
users’ perceptions of cognition-aware systems.

9.2 Results

On average, participants needed 9:09 minutes to complete the survey (σ=5:02).
The following sections present the results for the different blocks of the study.

Demographics Overall, 50 participants, aged 19–48 (mean=28.7, σ=6.32, 19
female), were recruited using Academic Prolific66, where we paid more than

66https://www.prolific.co/
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the minimum wage. The only screening criterion we had was that their first
language was German, since (a), the questionnaire was in German and (b),
cultural differences might occur in such a privacy analysis. The participants
had a rather high level of education, with only 7 participants not having general
qualification for university entrance, 20 having this qualification but without a
university degree, 15 having a Bachelor’s degree, and 8 having a Master’s degree
or diploma. Furthermore, they had strong experience with technical products
(mean=3.9 out of 4, σ=0.46). All of them used a computer and smartphone, half
of them a tablet, and 22% a smartwatch or fitness tracker. 10 reported having no
experience with e-learning systems, while the remaining 40 reported an average
experience of 2.75 (σ=0.71), which tends towards “rather high” on a 4-point scale.
On average they learn electronically for 3.25 (min=0, max=20, σ=5.13) hours per
month and mainly use a PC or laptop for this (29/40). As e-learning platforms,
participants mostly use Duolingo, Babbel, Moodle, Udemy, Codecademy, and
Coursera. These platforms also make sense if one considers the main goals
reported by the participants: learning of languages, learning programming, or
using them in courses at the university.

General Feedback At the end of the survey, after having introduced the concept
of cognition-aware e-learning, we asked participants about their opinions on
this idea. Here, the answers were rather inconclusive, at 2.62/4 (σ=1.01), where
3 means “somewhat positive”. Analyzing if there is a correlation between e-
learning experience and the participant’s opinion on the idea of cognition-aware
e-learning, we find that numerically it exists, but the link is not significant,
with p=0.101 for two-sided correlation, or respectively p=0.0505 if we assume a
positive correlation in the first place.

When asked whether the participants have misgivings regarding the concept of
cognition-aware e-learning, 22 participants reported that this was the case. The
reasons stated by the participants are all of the form “data protection/surveil-
lance/data theft”. In contrast, 20 participants either had no misgivings, finding it
“flexible/performance oriented”, or saw no issues under the assumption that the
data used would be communicated transparently, not sold, utilized only for this
purpose, and that the user could self-define the individual sensors from which
data is being used. Further comments were of the form “would be absolutely
great/intriguing”. 2 simply stated that they know their current state and which
content is suitable for their situation themselves. Lastly, 6 participants provided
no opinion on this question. These mixed feelings are in line with our findings
in chapter 6, and CL-aware CAT tools would also benefit from the highlighted
factors like opt-in mechanisms and data transparency.

Adaptation Ideas Interesting ideas on how to adapt e-learning tools towards
the current situation and cognitive state of the user were provided. We clustered
the participants’ various proposals: 29 proposals were of the form adapt content,
either by recommending the content itself, or by adapting duration, difficulty,
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speed, level of detail, or intensity. Furthermore, 17 participants suggest varying
the duration, e.g., by proposing breaks in between, by changing the duration of
learning intervals or by splitting learning content into parts of different length.
3 suggestions were to recommend times for learning where one could learn most
efficiently. Another 3 proposals suggested adapting the interface to reduce strain
through optical changes. 2 suggested relaxation exercises, e.g., some form of
meditation, when high loads are detected. Among the other infrequent proposals
was the idea to detect when the user only scans through text, to adapt the time
limits, vibrate on attention loss, provide individual learning goals, simply use
it for a quantified self-style motivation, provide individual feedback, or use the
data to improve the learning content for the future. Even though the question was
raised in a different domain, we see comparable replies to the answers given in
chapter 6 on PE, e.g., to adapt content/show support, propose breaks, or change
the interface based on detected CL.

Willingness to Disclose Sensor Data (A) When asking participants on a scale
from 1 to 4 about their willingness to disclose data from different sensors, by
simply assuming that an application would require this information, we get very
indifferent results: the averages per sensor are in the range [2.16, 2.92], where 2 is
“somewhat disagree” and 3 is “somewhat agree”; standard deviations are within
[0.966, 1.216].

We test the results for each sensor with two-tailed t-tests for significance against
2.5, which is the mean of our four points, to get a clear understanding of the
overall tendencies. The results in Table 9.1 show positive significant differences,
meaning that there is a clear tendency to disclose the data, for typing, mouse
and keyboard behavior (with p < 0.05). We find negative significant differences,
meaning that they would rather not disclose it, for facial expressions, ambient
noises, and pupil diameter (p < 0.05). For all other sensors, we do not find
significant differences; however, we report the tendencies in the data: movement
(number of steps), mode of motion, heart rate, breathing rate, surrounding bright-
ness, and skin temperature showed a positive tendency (towards disclosure),
while location, eye movement, skin resistance, body posture, and blood pressure
showed a negative tendency (against disclosure). Note that these results were
given independent of the e-learning context and thus also apply for PE.

Required Performance Improvements to Disclose Sensor Data (B) After hav-
ing introduced the general idea of an e-learning system that can adapt to the
user’s current cognitive state based on sensor data, we ask participants how
big the improvement gained would have to be, e.g., in terms of faster learning,
or making fewer mistakes. We also told them to assume that the data is used
only for this purpose. Here, we got different mean values and a greater spread
than for A: the averages are in the range [1.74, 3.00], and the standard deviations
within [1.258, 1.443], where our 5-point scale was from 0 (“no improvement at all
required”) to 4 (“immense improvement required”).
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Sensor p-val mean SD
Positively significant
(tendency to disclose)

Typing/mouse/touch
behavior

0.003 2.92 0.97

Negatively significant
(tendency not to disclose)

Facial expressions 0.033 2.16 1.10
Surrounding noises 0.042 2.16 1.15
Pupil diameter 0.049 2.20 1.05
Steps per day 0.061 2.80 1.11
Mode of locomotion 0.438 2.62 1.09

Positively insignificant
(tendency to disclose)

Heart rate 0.474 2.62 1.18
Respiration rate 0.623 2.58 1.14
Ambient brightness 0.699 2.56 1.09
Skin temperature 0.797 2.54 1.09
Location 0.394 2.38 0.99

Negatively insignificant
(tendency not to disclose)

Eye movements and blinks 0.487 2.40 1.01
Skin resistance 0.803 2.46 1.13
Body posture 0.803 2.46 1.13
Blood pressure 0.908 2.48 1.22

Table 9.1: Tendencies to disclose data depending on sensor (A).

Significance testing is conducted similarly to A, but against 2 (“moderate im-
provement required”), due to the different scale. Compared to A, we also have
an inverted scale polarity: high values indicate greater skepticism. The results
can be found in Table 9.2: We find positively significant differences, meaning
strong improvements would be necessary, for facial expressions, ambient noises,
pupil diameters, body posture, blood pressure (≤ 0.001), location, eye move-
ments/blinking, breathing rate, and ambient brightness (< 0.05). No signifi-
cant differences were found for the remaining sensors; however, we report the
tendencies here: they were positive (meaning strong improvements are likely
required), for skin temperature, skin resistance, heart rate, and mode of move-
ment, and negative (meaning small improvements are possibly required) for
typing/mouse/touch behavior and movement (steps).

Link between A and B We hypothesize that negative correlations exist between
A and B, since a high willingness to disclose the data (A) should reduce the
required improvement threshold (B), and a low willingness to disclose the data
(A) should result in a high threshold for improvement (B).

Pearson correlation analyses show that this is the case, as all correlations for the
sensor data are negative, strong (all r < −0.5), and significant (all p < 0.01). This
can also be seen in Figure 9.1, where A and B are plotted against each other on
a scale with equal polarity and ranges for both questions. For this, we linearly
scaled the answers from A in the range [1,4] to the range [-2,+2], and mapped the
answers from B such that 0 (“no improvement”) corresponds to the highest value
+2 and 4 (“immense improvement required”) to the lowest value -2.
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Sensor p-val mean σ

Facial expressions < 0.001 3.00 1.28
Surrounding noise < 0.001 2.80 1.28

Positively significant
(strong improvements
required)

Pupil diameter < 0.001 2.82 1.32
Body posture < 0.001 2.64 1.26
Blood pressure 0.001 2.64 1.34
Location 0.012 2.52 1.40
Eye movements/blinks 0.019 2.48 1.40
Respiratory rate 0.023 2.44 1.33
Ambient brightness 0.028 2.44 1.37

Negatively insignificant
(small improvements
required)

Typing/mouse/touch
input

0.175 1.74 1.34

Steps per day 0.764 1.94 1.41

Positively insignificant
(strong improvements
required)

Skin temperature 0.137 2.30 1.40
Skin resistance 0.302 2.20 1.36
Heart rate 0.317 2.20 1.40
Mode of locomotion 0.332 2.20 1.44

Table 9.2: Tendencies for performance improvements necessary to disclose sensor
data (B).

Participant and Sensor Group Differences We further test for group differences
based on interesting sub-groups of our participants, which we defined according
to their demographic data.

Analyzing the differences between “smartwatch/fitness tracker users” vs. “everyone
else” using a t-test per sensor shows that for A, a significant difference (p < 0.05)
for the steps per day and an almost significant difference for mode of locomotion
(p = 0.051) exist, with the “smartwatch” group being more likely to disclose data.

Separating the participants into “techies” vs. “non-techies” (e.g., software developer
vs. nurse) and “teachers” vs. “non-teachers” based on their job descriptions and
using a t-test, as well as separating the education levels “no high school graduation”
vs. “high school graduation” vs. “college degree” together with a multivariate
ANOVA, does not lead to any significant differences, neither for A nor B.

Since we explicitly asked participants at the end of the survey whether they had
misgivings regarding cognition-aware e-learning, we also clustered participants
into the groups “misgivings” and “no misgivings”, expecting the “misgivings”
group to be more concerned in A and B. For A we found, for all sensors except
location (where both groups tend towards the middle), that the “no misgivings”
group is more willing to disclose the data. Similarly for B, for all but three
sensors, the “no misgivings” group requires significantly less improvement to
disclose data. The exceptions are location, as well as ambient brightness and
typing/mouse/touch behavior, where both groups have similar opinions.
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Figure 9.1: User acceptance regarding different sensors. Both analyses (A) and
(B) are transformed to the same scale in the range [−2,+2], where positive values
indicate high willingness/low required improvements to disclose data.

Last, we group the sensors into “consumer device sensors” vs. “non-consumer device
sensors”, where the “non-consumer device sensors” comprise blood pressure,
body posture, eye movements and blinks, pupil diameter, and respiratory rate,
which are not commonly built into smartphones, smartwatches, or fitness trackers.
All other considered sensors are part of the “consumer device sensors” group. The
results show that there is no significant difference for the general privacy concerns
(A) with t(49) = −1.33 and p = 0.190, but that for the required improvements
(B), there is a significant difference t(49) = 2.90 and p = 0.006, meaning that
stronger improvements are required for sensors that are not commonly built into
consumer devices than for the commonly built-in sensors.

9.3 Discussion

In this chapter, we investigated the perceptions users have towards data disclo-
sure for cognition-aware systems. In general, our participants would most likely
disclose typing/mouse/touch behavior, while pupil diameter, facial expressions,
and surrounding noises would not likely be disclosed. We see this as two di-
mensions of intimacy, where users feel less unique in their typing/mouse/touch
interactions, while observing someone’s face or surrounding noises could feel
more intimate. This is in line with Motti and Caine (2015), who found that sen-
sors like cameras and microphones pose the most privacy concerns. Regarding
required performance improvements for e-learning, such information about the
surroundings and physiological data would only be disclosed by our participants
in exchange for strong improvements. Interestingly, we found significant differ-
ences for improvement requirements between sensors integrated into consumer
devices (e.g., heart rate or skin resistance) compared to less common measures
(e.g., pupil diameter). This could mean that users are more concerned about the
new or unknown sensors and that they might become less skeptical once sensors
become more widespread. Interestingly within the learning domain, the level of
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education did not significantly influence the tendency to disclose data, nor the
improvements required for disclosure.

While the averages for most sensors tend towards the middle, thereby making
effects small, we still found several significant tendencies. A reason for this trend
towards the middle could be that for the critical topic of privacy concerns, people
do not claim to willingly disclose all personal data without any concerns, but at
the same time they know from previous experience that they do share data for
convenient services (Williams, 2018). This, combined with a fear of the unknown,
might have led to the small differences in means. The fear of losing sensitive
data, paired with the potential gains in learning success that our participants
envisioned, might also explain the overall inconclusive judgements regarding
the idea of cognition-aware e-learning systems.

We also see that a strong link between the data disclosure readiness (A) and the
required performance improvements (B) exists, indicating that the concerns are
more of a general nature than specific to the context of cognition-aware e-learning,
thus, also relevant for cognition-aware PE in adaptive CAT environments.

Misgivings about the idea of cognition-aware e-learning exist mainly with regard
to data protection; however, many users reported no concerns if topics like
transparency, security and opt-ins are properly addressed. This indicates that
these aspects should be of the highest priority when implementing the concept
in practice, both in e-learning and PE. We further found plenty of interesting
adaptation ideas, reflecting the interest in the topic that was also expressed in the
form of approval/praise. There is also a (non-significant) tendency that users
with more e-learning experience have more positive feelings towards the idea of
cognition-aware e-learning.

The main limitation of this work is that we only asked about data disclosure in a
survey, without having tested a cognition-aware e-learning system in practice.
Furthermore, we only sampled German participants, so cultural differences might
occur for different countries.

9.4 Conclusion

This chapter explored which of the numerous approaches to capture the cognitive
state would be well accepted by users, whether some sensors are more concerning
than others, and what benefits must be achieved through cognition-awareness to
make data disclosure worthwile. To answer these questions, we conducted an
online survey with 50 participants. The results show that people would provide
access to behavioral data like keyboard input without major concerns; however,
other sensors are considered much more sensitive. Participants also appear less
concerned about sensors that are integrated into consumer devices than about
less widespread ones. Our results can guide practitioners developing cognition-
aware systems to achieve broader user acceptance and show researchers which
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measuring methods are perceived as intrusive. Due to the separation of the
analysis into general findings (A), and findings specific to e-learning (B), we were
able to see that most of our results in fact are of a general nature and therefore
should also apply to PE of MT. This can also be seen in the general opinions
regarding cognition-aware e-learning and ideas on how best to adapt to the
cognitive state, which are both similar to what we already reported for the PE
context in chapter 6.

After detailed analysis of the suitability of different sensing modalities for mak-
ing CAT tools or e-learning platforms cognition-aware, this final chapter again
involved users to understand which monitoring approaches they would find
suitable and concerning. We have seen that even though physiological measures
work very well, they lead to more privacy concerns than behavioral sensors. This
highlights the importance of our multi-modal approach, which was particularly
beneficial to these measures.
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Part IV

Automatic Post-Editing
As discussed before, an efficient cooperation between human and
machine becomes more and more important with better MT output.
Part II discussed how multi-modal input in the form of e.g., pen or
speech interactions can support the PE process. Part III then pre-
sented approaches to estimate cognitive load and discussed how
this can be used to better adapt to the user’s current state. Finally,
this part discusses another form of support, namely Automatic Post-
Editing (APE). As introduced in the literature review (section 2.5),
APE is a method that aims to automatically correct errors made by
MT systems before performing actual human PE (Knight and Chan-
der, 1994), thereby reducing the translators’ workload and increasing
productivity (Pal et al., 2016a).

We first present two novel APE architectures: the Multi-Source Trans-
former (chapter 10), which we submitted to WMT 2018, as well as the
Transference architecture from WMT 2019, for which we conducted
several additional analyses (chapter 11). Both approaches are multi-
source approaches, mapping {src,mt} → pe which has been shown
to provide further benefits compared to single-source (mt→ pe) ap-
proaches (Bojar et al., 2017, 2016, 2015). As an architecture, both build
upon the Transformer architecture (Vaswani et al., 2017), which itself
is built upon attention mechanisms (Bahdanau et al., 2014) completely
replacing recurrence and convolutions. These attention mechanisms
can be used to provide awareness of errors in mt originating from src,
because they model non-local dependencies in the input or output
sequences, and importantly also global dependencies between them
(in our case src, mt and pe).

Finally, chapter 12 provides a general discussion how APE can be
used to improve the human-AI collaboration, e.g., by adapting an MT
engine to a domain or translator-specific style from a limited amount
of data and without long retraining times.

Part IV is based on publications Pal et al. (2018), Pal et al. (2019), and
Pal et al. (2020).
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Chapter 10
The Multi-Source Transformer for

Automatic Post-Editing

As discussed in section 2.5, Automatic Post-Editing (APE) is a method that learns
from human post-edits to avoid repetitive mistakes of the MT, which are one
of the main reasons why many translators’ dislike PE (O’Brien and Moorkens,
2014). This chapter presents our English–German APE system submitted to
the APE Task organized at WMT 2018 (Chatterjee et al., 2018). The proposed
model is an extension of the Transformer architecture: two separate self-attention-
based encoders encode the machine translation output (mt) and the source (src),
followed by a joint encoder that attends over a combination of these two en-
coded sequences (encsrc and encmt) for generating the post-edited sentence. We
compare this multi-source architecture (i.e, {src,mt} → pe) to a monolingual
Transformer (i.e., mt→ pe) model and an ensemble combining the multi-source
{src,mt} → pe and single-source mt → pe models. We will first present the
model architecture in detail and then report on the experiments conducted to
understand its benefits.

This chapter is based on Pal et al. (2018).

10.1 Architecture

MT errors originating from the input source sentences suggest that APE systems
should leverage information from both the src and mt, instead of considering
mt in isolation. This can help the model to disambiguate corrections applied at
every time step. Overall, we thus explore single-source (mt→ pe), multi-source
({src,mt} → pe), and an ensemble of these two models for APE.
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All our models are based on the Transformer architecture (Vaswani et al., 2017),
which provided the new state-of-the-art in 2017 and continues to be a widely
used model. We extend the Transformer architecture to investigate how efficient
this approach is in a multi-source scenario. In MT tasks, it was already shown
that a Transformer can learn long-range dependencies. Therefore, we explore
if we can leverage information from src and mt via a joint encoder through
self-attention (see Section 10.1.2) to provide dependencies between src–mt that
are then projected to the pe.

10.1.1 Single-Source Transformer for APE (mt→ pe)

Our single-source model (SS) is basically an encoder-decoder-based Transformer
architecture (Vaswani et al., 2017), however, learning to transformmt to pe instead
of a standard MT task that aims to transform src into a reference translation.
Transformer models can replace sequence-aligned recurrence entirely and use
three types of multi-head attention: encoder-decoder attention (also known as
vanilla attention), encoder self-attention, and masked decoder self-attention.
Since for multi-head attention each head uses different linear transformations, it
can learn these separate relationships in parallel.

10.1.2 Multi-Source Transformer for APE ({src,mt} → pe)

For our multi-source model (MS), we propose a novel joint Transformer model
(see Figure 10.1), which combines the encodings of src and mt and attends over a
combination of both sequences while generating the post-edited sentence. Apart
from encsrc and encmt, each of which is equivalent to the original Transformer’s
encoder (Vaswani et al., 2017), we use a joint encoder with an equivalent architec-
ture, to maintain the homogeneity of the Transformer model. For this, we extend
Vaswani et al. (2017) by introducing an additional identical encoding block by
which both the encsrc and the encmt encoders communicate with the decoder.

Our multi-source neural APE computes intermediate states encsrc and encmt

for the two encoders, encsrc,mt for their combination, and decpe for the decoder
in sequence-to-sequence modeling. One self-attention based encoder for src
maps s = (s1, s2, ..., sk) into a sequence of continuous representations, encsrc =
(e1, e2, ..., ek), and a second encoder for mt, m = (m1,m2, ...,ml), returns another
sequence of continuous representations, encmt = (e

′
1, e

′
2, ..., e

′
l). The self-attention

based joint encoder (see Figure 10.1) then receives the concatenation of encsrc
and encmt, encconcat = [encsrc, encmt] as an input, and passes it through the
stack of 6 layers, with residual connections, normalization, self-attention, and
a position-wise fully connected feed-forward neural network. As a result, the
joint encoder produces a final representation (encsrc,mt) for both src and mt.
Self-attention at this point provides the advantage of aggregating information
from all of the words, including src and mt, and successively generates a new
representation per word informed by the entire src and mt context. The decoder
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Figure 10.1: The Multi-Source Transformer model architecture for APE.

generates the pe output in sequence, decpe = (p1, p2, . . . , pn), one word at a time
from left to right by attending previously generated words as well as the final
representations (encsrc,mt) generated by the encoder.

10.1.3 Ensemble

In order to leverage the network architecture for both single-source and multi-
source APE as discussed above, we decided to ensemble several expert neural
models. Each model is averaged using the 5 best saved checkpoints, which
generate different translation outputs. Taking into account all these generated
translation outputs, we implement an ensemble technique based on the frequency
of occurrence of the output words: Corresponding to each input word, we cal-
culate the most frequent occurrence of the output word from all the generated
translation outputs. For the two different APE tasks (see section 10.2), we ensem-
ble the following models:

• PBSMT task: We ensemble a SS (mt → pe) and a MS ({src,mt} → pe)
average model.
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• NMT task: We ensemble two average SS (mt→ pe) and MS ({src,mt} →
pe) models together with a SS and a MS model that are fine-tuned on a
subset of the training set (see subsubsection 10.2.3).

10.2 Experiments

In our experiment we investigate (1) how well the Transformer-based APE ar-
chitecture performs in general, (2) if our multi-source architecture using the
additional joint encoder improves the performance over a single-source archi-
tecture, and (3) if ensembling of single-source and multi-source architectures
facilitates APE even further.

10.2.1 Data

We explore our approach on both APE sub-tasks of WMT 2018 (Chatterjee et al.,
2018), where the black box MT (we refer as 1st-stage MT) system to which APE
is applied is either a Phrase-Based Statistical Machine Translation (PBSMT) or a
Neural Machine Translation (NMT) model. For the PBSMT task, there is a total
of 23K English–German APE data samples (11K from WMT 2016 and 12K from
WMT 2017) (Bojar et al., 2017). For the NMT task, 13,442 samples of English–
German APE data are provided.

All released APE data consists of English–German triplets containing source
English text (src) from the IT domain, the corresponding German translations
(mt) from a first stage MT system, and the corresponding human post-edited
version (pe), all of them already tokenized. As this released APE dataset is small
in size (see Table 10.1), additional resources are also available: first, the ‘artificial
training data’ (Junczys-Dowmunt and Grundkiewicz, 2016) containing 4.5M
sentences, 4M of which are weakly similar to the WMT 2016 training data, while
500K show very similar TER statistics; and second, the synthetic ‘eSCAPE’ APE
corpus (Negri et al., 2018b), consisting of more than 7M triples for both NMT and
PBSMT. More detail on these artifical datasets can be found in section 2.5.1.

Table 10.1 presents the statistics of the released data for the English–German APE
task organized in WMT 2018. These datasets, except for the eSCAPE corpus, do
not require any preprocessing in terms of encoding or alignment.

For cleaning the noisy eSCAPE dataset containing many unrelated language
words (e.g., Chinese), we perform the following two steps: (i) we use the cleaning
process described in Pal et al. (2015), and (ii) we execute the Moses (Koehn et al.,
2007) corpus cleaning scripts with minimum and maximum number of tokens set
to 1 and 80, respectively. After cleaning, we use the Moses tokenizer to tokenize
the eSCAPE corpus. To handle out-of-vocabulary words, words are preprocessed
into subword units (Sennrich et al., 2016) using Byte-Pair Encoding (BPE).
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Sentences
Corpus 2016 2017 2018 Cleaning
Train 12,000 11,000 - -
Dev 1,000 - - -PBSMT
Test 2,000 2,000 2,000 -
Train - - 13,442 -
Dev - - 1,000 -NMT
Test - - 1,023 -
Artificial - 4M + 500K - -
eSCAPE-PBSMT - - 7,258,533 6,521,736Additional

Resources eSCAPE-NMT - - 7,258,533 6,485,507

Table 10.1: Statistics of the WMT 2018 APE shared task dataset.

10.2.2 Hyperparameter Settings

For the multi-source case ({src,mt} → pe), both the self-attended encoders, the
joint encoder, and the decoder are composed of a stack of N = 6 identical layers.
Each layer again consists of two sub-layers with normalization and a residual
connection (He et al., 2016b) around each of the two sub-layers. During training,
we employ label smoothing of value εls = 0.1. The output dimension produced
by all sub-layers and embedding layers is defined as dmodel = 256. All dropout
values in the network are set to 0.2. Each encoder and decoder contains a fully
connected feed-forward network having dimensionality dmodel = 256 for the
input and output and dimensionality dff = 1024 for the inner layer. This is a
similar setting to the original Transformer’s (Vaswani et al., 2017) C − model.
For the scaled dot-product attention, the input consists of queries and keys of
dimension dk, and values of dimension dv. As multi-head attention parameters,
we employ h = 8 for parallel attention layers, or heads. For each of these we use
a dimensionality of dk = dv = dmodel/h = 32. For optimization, we use the Adam
optimizer (Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.98 and ε = 10−9. The
learning rate is varied throughout the training process, first increasing linearly
for the first training steps warmupsteps = 4000 and then adjusted as described in
Vaswani et al. (2017).

At training time, the batch size is set to 32 samples, with a maximum sentence
length of 80 subwords, and a vocabulary of the 50K most frequent subwords.
After each epoch, the training data is shuffled. For encoding the word order, our
model uses learned positional embeddings (Gehring et al., 2017), since Vaswani
et al. (2017) reported nearly identical results to sinusoidal encodings. After
finishing training, we save the 5 best checkpoints saved at each epoch. Finally,
we use a single model obtained by averaging the last 5 checkpoints. During
decoding, we perform greedy-search-based decoding.

We follow a similar hyperparameter setup for mt → pe. The total number of
parameters for our {src,mt} → pe and mt→ pe model is 46× 106 and 28× 106.
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10.2.3 Experiment Setup

This section presents the training process using the above datasets, to train single-
source (mt→ pe), multi-source ({src,mt} → pe), and ensemble models for both
the PBSMT and NMT tasks.

PBSMT Task

For the PBSMT task, we first train both our SS and MS systems with the cleaned
eSCAPE corpus for 3 epochs. We then perform transfer learning with 4M artificial
data for 7 epochs. Afterwards, fine-tuning is performed using the 500K artificial
and 23K real PE training data for another 20 epochs. Furthermore, we generate
an ensemble model, by combining the 5-best-checkpoint model of SS with the
5-best-checkpoint model of MS.

We use the WMT 2016 development data (dev2016) containing 1,000 triplets to
validate the model during training. To test our system performance, we use the
WMT 2016 and 2017 test data (test2016, test2017), each containing 2,000 triplets.
Furthermore, we report the results of the submitted ensemble model on test2018.

NMT Task

Initial tests for pre-training our NMT model on the NMT eSCAPE data showed
no performance improvements. Therefore, we use the PBSMT SS and MS models
as a basis for the NMT task. We use the PBSMT models after training them on
the eSCAPE corpus, the 4M artificial data and the 500K + 23K train sets of WMT
16 and 17. These SMT-based models are then fine-tuned using the WMT 2018
NMT APE data (train18) for 60 epochs.

Afterwards, we perform an additional fine-tuning step towards the dev18/test18
dataset: For this, we extract sentences of train18 that are similar to the sentences
contained in dev18/test18 and fine-train for another 15 epochs on this subset of
train18, which we call fine-tune18. As a similarity measure we use the cosine sim-
ilarity between the train src and mt segments and the test src and mt segments,
respectively. These cosine similarities for src and mt are then simply multiplied
to achieve an overall similarity measure. Our fine-tuning dataset contains only
sentences with an overall similarity of at least 0.9.

Last, two separate ensemble models are created. One consists of only the non-
fine-tuned SS and MS models, and one ensembles the SS and MS models in both
fine-tuned and non-fine-tuned variants. Both ensembles are created by averaging
over the 5 best checkpoints of each sub-model.

We report the results of all created models for the dev18 NMT dataset, and
additionally those of the submitted overall ensemble model on test18.
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10.3 Results & Discussion

This section presents and discusses the results on the PBSMT and NMT tasks.

10.3.1 Phrase-Based Statistical Machine Translation Task

Table 10.2 presents the results for the PBSMT APE task (see subsubsection 10.2.3),
where two different Transformer-based models, one ensemble of these models
and the baseline BLEU scores are shown. The baseline here refers to the original
MT output evaluated with respect to the corresponding human PE translation.
All models yield statistically significant results (p < 0.001) over this baseline.
MSavg also provides statistically significant improvement over SSavg. For this
and all following significance tests we employ the method by Clark et al. (2011)67.

APE Systems eScape 4M 500K train16 train17 test16 test17 test18
Baseline - 62.92 62.11 62.99
SSavg 3 eps 7 eps 20 eps 66.27 66.60 -
MSavg 3 eps 7 eps 20 eps 67.31 67.66 -
Ensemble MSavg{5cps} + SSavg{5cps} 68.52 68.91 66.16

Table 10.2: BLEU scores for all models on the WMT 2018 PBSMT task.

Generally, reasons for the good performance of our Transformer-based MS ar-
chitecture in comparison to the SS approach for PBSMT-based APE could be
the positional encoding that injects information about the relative or absolute
position of the tokens in the sequence. This might help to handle word order
errors in mt for a given src context. Another possible explanation lies in the
self-attention mechanism, which handles local word dependencies for src, mt,
and pe. After the individual dependencies are learned by the two encoders’
self-attention mechanisms, another level of self-attention is performed that can
jointly learn from both src and mt using our joint encoder, thereby informing the
decoder about the long-range dependencies between the words within both src
and mt. Compared to RNNs, we believe that this technique can better convey
source information via mt to the decoder. The ensemble model then leverages
the advantages of both our SS and MS approaches to further improve the results.

10.3.2 Neural Machine Translation Task

The results for our Transformer-based architecture for the NMT task are shown
in Table 10.3. As can be seen, the baseline NMT system performs best, followed
by the ensemble models, then the multi-source architectures and lastly the single-
source approach. These differences between the three approaches, ensemble, MS,
and SS, are all statistically significant. Fine-tuning provides some small, albeit
insignificant, improvements over the non-fine-tuned versions.

67https://github.com/jhclark/multeval
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APE Systems Base Model train18 fine-tune18 dev18 test18
Baseline - - - 76.66 74.73
SSavg SSavg (PBSMT) 60 eps - 72.75
MSavg MSavg (PBSMT) 60 eps - 74.84 -
SSft SSavg (NMT) - 15 eps 73.17 -
MSft MSavg (NMT) - 15 eps 75.05 -
Ensemble MSavg{5cps} + SSavg{5cps} 75.80 -
Ensembleft MSavg{5cps} + SSavg{5cps} +

MSft{5cps} + SSft{5cps}

75.96 74.22

Table 10.3: BLEU scores for all models on the WMT 2018 NMT task.

Similar to many submissions to the NMT task of WMT 2018, our model did not
improve over the strong NMT baseline (see subsubsection 2.5.2). Only two teams
managed to statistically beat the baseline in terms of TER, and gained less than
0.4 TER point improvement. Reasons for those discouraging results as given by
the task organizers were the very high MT quality as well the small data size of
only about 13k training samples. Even though none of our architectures perform
better than the baseline MT system for the NMT task, we clearly see that the
multi-source approach helps, and that ensembling of different SS and MS models
further increases the performance. These results are in line with our expectations,
because intuitively, inspecting both src and mt should help detect and correct
common errors. However, we are unsure why all of our models did not improve
over the baseline, which could have been achieved by simply copying the mt.
One reason might be the small amount of PE data, which comprises only 13K
samples; this could also explain why the simple fine-tuning approach already
leads to slightly higher BLEU scores. However, further human evaluation is
necessary to better understand what our model is doing for the neural APE task
and why it remains approximately 0.5 BLEU points below the baseline.

10.4 Conclusion

We investigated a novel Transformer-based multi-source APE approach that uses
two encoders, a joint encoder, and a single decoder. Our model concatenates
two separate self-attention-based encoders (encsrc and encmt) and passes this
sequence through another self-attended joint encoder (encsrc,mt) to ensure cap-
turing dependencies between src and mt. Finally, this joint encoder is fed to the
decoder which follows a similar architecture as described in Vaswani et al. (2017).
The entire model is optimized as a single end-to-end Transformer network.

This architecture yields statistically significant improvements over single-source
Transformer-based models. An ensemble of both variants increases the perfor-
mance further. For the PBSMT task, the baseline MT system was outperformed by
3.2 BLEU points, while the NMT baseline remains 0.51 BLEU points better than
our APE approach on the 2018 test set. Thus, while our neural APE approach
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can improve over PBSMT baselines, it fails to improve (and even decreases)
compared to state-of-the-art neural NMT.

This chapter contributed to our third research question by showing a practical
implementation of a system that is able to learn from human post-edits to avoid
repetitive mistakes, thereby making subsequent PE quicker and less repetitive.
While strong improvements over the PBSMT baseline were shown, the inability
to outperform the NMT system shows that further research is required. One
option would be the exploration of different hyperparameter setups (e.g., the
‘big’ or the ‘base’ hyperparameter configuration in the original paper (Vaswani
et al., 2017) or beam-search decoding, however, we instead focus on further
improvements to the architecture itself, as discussed in the next chapter.

247



248



Chapter 11
The Transference Architecture for

Automatic Post-Editing

In this chapter, we continue our search for APE architectures that best support the
capture, preparation and provision of src and mt information and its integration
with pe decisions by presenting a multi-source APE model, called Transference.
Unlike previous approaches, it (i) uses a Transformer encoder block for src,
(ii) followed by a decoder block, but without masking for self-attention on mt,
which effectively acts as second encoder combining src → mt, and (iii) feeds
this representation into a final decoder block generating pe. We first submitted
this architecture to WMT 2019, where we achieved 0.9 and 1.0 absolute BLEU
points improvement on the development and test set. Our submission is on par
with the winning approach while being simpler, as we do not use a BERT-based
architecture. The results in comparison to other approaches can be found in
the WMT 2019 findings (Barrault et al., 2019). After presenting the architecture
and comparing it to the Multi-Source Transformer (see chapter 10), we conduct
an experiment on both SMT and NMT data. Furthermore, we investigate the
importance of our newly introduced second encoder and analyze the error types
fixed by our model.

This chapter is based upon publications Pal et al. (2019) and Pal et al. (2020).

11.1 Architecture

As already argued for our previous architecture, errors in mt originating from src
can be modelled using attention mechanisms (Bahdanau et al., 2014), which can
capture non-local dependencies in the input or output sequences, and importantly
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also global dependencies between them (in our case src, mt and pe). We thus,
again build upon the Transformer architecture (Vaswani et al., 2017), which uses
positional encoding to encode the input and output sequences, and computes
both self- and cross-attention through so-called multi-head attentions, which can
be efficiently parallelized. Such multi-head attention allows to jointly attend to
information at different positions from different representation subspaces, e.g.,
utilizing and combining information from src, mt, and pe.

We propose a multi-source Transformer model called Transference ({src,mt}tr →
pe, Figure 11.1), which takes advantage of both the encodings of src and mt
and attends over a combination of both sequences while generating the post-
edited sentence. The second encoder, encsrc→mt, makes use of the first encoder
encsrc and a sub-encoder encmt for considering src and mt. Here, the encsrc
encoder and the decpe decoder are equivalent to the original Transformer for
neural MT (Vaswani et al., 2017). Our encsrc→mt follows an architecture similar
to the Transformer’s decoder, the difference being that no masked multi-head
self-attention is used to process mt. We thus recombine the different blocks of the
Transformer architecture and repurpose them for the APE task in a simple yet
effective way. The name Transference was chosen as it describes how the second
encoder conditionally learns the context dependencies from both src and mt and
projects these to pe.

Figure 11.1: Overview of the Transference model architecture for APE
({src,mt}tr → pe).

The suggested architecture is inspired by the two-step approach professional
translators tend to use during PE: First, the source segment is compared to the
corresponding translation suggestion (similar to what our encsrc→mt is doing),
then corrections to the MT output are applied based on the encountered errors
(in the same way that our decpe uses the encoded representation of encsrc→mt to
produce the final translation).

Looking at the architecture in detail (see Figure 11.2), the self-attended encoder for
src, s = (s1, s2, . . . , sk) returns a sequence of continuous representations, encsrc,
and the second self-attended sub-encoder for mt, m = (m1,m2, . . . ,ml), returns
another sequence of continuous representations, encmt. Self-attention at this
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point provides the advantage of aggregating information from all of the words,
including src and mt. The internal encmt representation performs cross-attention
over encsrc and prepares a final representation (encsrc→mt) for the decoder (decpe).
The decoder then generates the pe output in sequence, p = (p1, p2, . . . , pn), one
word at a time from left to right by attending to previously generated words as
well as the final encoder representation (encsrc→mt).

Figure 11.2: The Transference architecture for APE ({src,mt}tr → pe) in detail.

To summarize, our multi-source APE implementation extends Vaswani et al.
(2017) by introducing an additional encoding block by which src and mt commu-
nicate with the decoder.

Comparison to Multi-Source Transformer The Multi-Source Transformer dis-
cussed in the last chapter uses 3 standard Transformer encoder blocks: one for
src, one formt, and one encoding the combined output of encsrc and encmt called
encsrc,mt (see Figure 10.1). In the Transference architecture, encsrc is identical to
the Multi-Source Transformer, however, a Transformer decoder block (without
masking) is used to encode mt and combine it with the output of encsrc, shown
as encsrc→mt in Figure 11.2.

251



Comparison to wmt18smt
best The Transference architecture also differs from

the WMT 2018 PBSMT winning system (wmt18smt
best, see Junczys-Dowmunt and

Grundkiewicz (2018) in section 2.5.2) in several ways: (i) we use the original
Transformer’s decoder without modifications; (ii) one of our encoder blocks
(encsrc→mt) is identical to the Transformer’s decoder block but uses no masking
in the self-attention layer, thus, having one self-attention layer and an additional
cross-attention for src→ mt; and (iii) in the decoder layer, the cross-attention is
performed between the encoded representation from encsrc→mt and pe. More-
over, placing a cross-attention network within the encsrc→mt sub-layer rather
than the decpe sub-layer as in wmt18smt

best, during inference, encsrc→mt is forward
propagated only once instead of multiple times i.e., once per decoding step.

Comparison to wmt18nmt
best Our approach also differs from the WMT 2018

NMT winning system (Tebbifakhr et al., 2018) (see section 2.5.2): (i) wmt18nmt
best

concatenates the encoded representation of two encoders and passes it as the key
to the attention layer of the decoder, and (ii), the system additionally employs
sequence-level loss functions based on maximum likelihood estimation and
minimum risk training in order to avoid exposure bias during training.

Comparison to Libovický et al. In contrast to other multi-encoder based ap-
proaches and Libovický et al. (2018)’s approach (see section 2.5.2), where the
authors focused on cross-attention of two encoders with respect to the Trans-
former decoder, we propose a novel architecture where the second encoder block
is similar to the Transformer decoder block but without masking.

Comparison to wmt19nmt
best Comparing with wmt19nmt

best (Lopes et al., 2019) (see
section 2.5.2), the winning system of WMT 2019 uses a pre-trained deep bidirec-
tional Transformer (multilingual BERT, Devlin et al. (2019)), while our model
does not. wmt19nmt

best uses a single pre-trained BERT encoder that receives both
the src and mt strings and applies a BERT-based encoder-decoder model. Ad-
ditionally, they add a conservativeness penalty factor during beam decoding to
avoid over-corrections in APE.

The main intuition is that our encsrc→mt attends over the src and mt and informs
the pe to better capture, process, and share information between src-mt-pe, which
efficiently models error patterns and the corresponding corrections. Our model
performs better than past Transformer-based approaches and similar to the BERT-
based approach (wmt19nmt

best ) without adding the overhead of the pre-trained
model, as the experiment section will show.
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11.2 Experiments

For the PBSMT task, we compare against four baselines: the raw SMT output
provided by the 1st-stage PBSMT, the best-performing systems from WMT APE
2018 (wmt18smt

best), which are a single model and an ensemble model by Junczys-
Dowmunt and Grundkiewicz (2018), as well as a Transformer directly translating
from src to pe (Transformer (src→ pe)), thus, performing translation instead
of APE. We evaluate the systems using BLEU (Papineni et al., 2002) and TER
(Snover et al., 2006).

For the NMT task, we consider three baselines: the raw NMT output provided
by the 1st-stage NMT system and the best-performing systems from WMT 2018
(wmt18nmt

best by Tebbifakhr et al. (2018)) and WMT 2019 (wmt19nmt
best by Lopes

et al. (2019)).

Apart from the multi-encoder Transference architecture ({src,mt}tr → pe) and
ensembling of this architecture, two simpler versions are also analyzed: first, a
‘mono-lingual’ (mt→ pe) APE model using only parallel mt–pe data and there-
fore only a single encoder, and second, an identical single-encoder architecture,
however, using the concatenated src and mt text as input ({src + mt} → pe)
(Niehues et al., 2016).

11.2.1 Data

As for the Multi-Source Transformer, we use the English–German WMT 2016
(Bojar et al., 2016), 2017 (Bojar et al., 2017), 2018 (Chatterjee et al., 2018) for our
experiments. All these released APE datasets consist of English–German triplets
containing source English text (src) from the IT domain, the corresponding
German translations (mt) from a 1st-stage MT system, and the corresponding
human post-edited version (pe). The 2019 version of the APE dataset released in
WMT (Chatterjee et al., 2019) is the same as the WMT 2018 NMT data. As before,
the dataset sizes are visualized in Table 10.1. Note that for WMT 2018 we only
worked on the NMT sub-task and ignored the data for the PBSMT task.

Since the datasets are small in size, we again rely on the artificial datasets by
Junczys-Dowmunt and Grundkiewicz (2016) containing 4.5M sentences as ad-
ditional resources, 500K of which are very similar to the WMT 2016 training
data according to TER statistics. For the NMT task, we further use the synthetic
eScape APE corpus (Negri et al., 2018b), consisting of ∼7M triples, which we
clean using (i) the cleaning process described in Tebbifakhr et al. (2018), and (ii)
we use the Moses (Koehn et al., 2007) corpus cleaning scripts with minimum and
maximum number of tokens set to 1 and 100, respectively. After cleaning, we per-
form punctuation normalization, and then use the Moses tokenizer (Koehn et al.,
2007) to tokenize the eScape corpus with ‘no-escape’ option. Finally, we apply
true-casing. The cleaned version of the eScape corpus contains ∼6.5M triplets.
More information on these artificial datasets can be found in subsubsection 2.5.1.
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11.2.2 Experiment Setup

To build models for the PBSMT tasks from 2016 and 2017, we first train a generic
APE model using all the training data (4M + 500K + 12K + 11K). Afterwards,
we fine-tune the trained model using the 500K artificial and 23K (12K + 11K)
real PE training data. We use the WMT 2016 development data (dev2016) con-
taining 1,000 triplets to validate the models during training. To test our system
performance, we use the WMT 2016 and 2017 test data (test2016, test2017) as two
sub-experiments, each containing 2,000 triplets (src, mt, and pe). We compare
our model’s performance with the four baseline systems described above: raw
MT, wmt18smt

best single and ensemble, as well as Transformer (src→ pe).

Additionally, we check the performance of our model on the WMT 2018 NMT
APE task (where unlike in previous tasks, the 1st-stage MT system is provided
by NMT): For this, we explore two experimental setups: (i) we use the PBSMT
task’s APE model as a generic model which is then fine-tuned to a subset (12k)
of the NMT data ({src,mt}nmt

tr → pegen,smt). One should note that it has been
argued that the inclusion of SMT-specific data could be harmful when training
NMT APE models (Junczys-Dowmunt and Grundkiewicz, 2018). (ii), we train
a completely new generic model on the cleaned eScape data (∼6.5M) along
with a subset (12K) of the original training data released for the NMT task
({src,mt}nmt

tr → pegen,nmt). The aforementioned 12K NMT data are the first 12K
of the overall 13.4K NMT data. The remaining 1.4K are used as validation data.
The released development set (dev2018) is used as test data for our experiment,
alongside the test2018, for which we could only obtain results for a few models
by the WMT 2019 task organizers. We also explore an additional fine-tuning step
of {src,mt}nmt

tr → pegen,nmt towards the 12K NMT data (called {src,mt}nmt
tr →

peft), and a model averaging the 8 best checkpoints of {src,mt}nmt
tr → peft,

which we call {src,mt}nmt
tr → peftavg.

During PE, professional translators have to understand the source, and analyze
if the MT correctly represents the source, which corresponds to our encsrc and
encsrc→mt. To investigate whether following this realistic understanding of the
post-editing process is beneficial for APE, we compare the model to a version
with swapped inputs (mt, src), called {mt, src}smt

tr → pegen. We carried out
an experiment with the PBSMT task’s APE dataset. Moreover, we fine-tune the
{mt, src}smt

tr → pegen model with 500K artificial and 23K real PE training data and
compare the fine-tuned model ({mt, src}smt

tr → peft) with {src,mt}smt
tr → peft.

Last, we analyze the importance of our new second encoder (encsrc→mt), com-
pared to the source encoder (encsrc) and the decoder (decpe), by reducing and
expanding the amount of layers in the encoders and the decoder. Our standard
setup, which we use for fine-tuning, ensembling etc., is fixed to 6-6-6 for Nsrc-
Nmt-Npe (see Figure 11.2), where 6 is the value that was proposed by Vaswani
et al. (2017) for the base model. We investigate what happens in terms of APE
performance if we change this setting to 6-6-4 and 6-4-6.
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As for the Multi-Source Transformer, our model operates on subword units
(Sennrich et al., 2016) by using Byte-Pair Encoding (BPE), thereby avoiding out-
of-vocabulary words and reducing the vocabulary size. In the preprocessing step,
instead of learning an explicit mapping between BPEs in the src, mt and pe, we
define BPE tokens by jointly processing all triplets. Thus, src, mt and pe derive a
single BPE vocabulary. Since mt and pe belong to the same language (German)
and src is a close language (English), they naturally share a good fraction of BPE
tokens, which reduces the vocabulary size to 28k. We implemented our approach
based on the Neutron implementation of the Transformer (Xu and Liu, 2019)68.

11.2.3 Hyperparameter Settings

We follow a similar hyperparameter setup for all reported systems: All encoders
(for {src,mt}tr → pe), and the decoder, are composed of a stack of Nsrc =
Nmt = Npe = 6 identical layers (except for the layer experiment) followed by
layer normalization. The learning rate is varied throughout the training process,
and increasing for the first training steps warmupsteps = 8000 and afterwards
decreasing as described in Vaswani et al. (2017). All remaining hyperparameters
are set analogously to those of the Transformer’s base model. At training time,
the batch size is set to 25K tokens, with a maximum sentence length of 256
subwords. After each epoch, the training data is shuffled. During decoding, we
perform beam search with a beam size of 4. As described above, we use shared
embeddings between mt and pe in all our experiments.

11.3 Results

For the PBSMT task, the results of our models, single-source (mt→ pe), multi-
source single encoder ({src + pe} → pe), Transference model ({src,mt}smt

tr → pe)
and its alternative with swapped inputs ({mt, src}smt

tr → pe), and ensemble, in
comparison to the four baselines, raw SMT, wmt18smt

best (Junczys-Dowmunt and
Grundkiewicz, 2018) single and ensemble, as well as Transformer (src→ pe), are
presented in Table 11.1 for test2016 and test2017.

For the NMT task, Table 11.2 reports the results obtained by our Transference
model ({src,mt}nmt

tr → pe) on the WMT 2018, 2019 NMT data for dev2018
(which we use as a test set) and test2018/2019 (where results were obtained by the
organizers), compared to the baselines raw NMT, wmt18nmt

best, and wmt19nmt
best.

11.3.1 Baselines

The raw SMT output in Table 11.1 is a strong black-box PBSMT system (i.e.,
1st-stage MT). We report its performance observed with respect to the ground

68https://github.com/anoidgit/transformer.
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test2016 test2017# Models BLEU ↑ TER ↓ BLEU ↑ TER ↓
Baselines
1.1 Raw SMT 62.11 24.76 62.49 24.48
1.2 Transformer (src→ pe) 56.59 (-5.52) 29.97 (+5.21) 53.06 (-9.43) 32.20 (+7.72)
1.3 wmt18smt

best (single) 70.86 (+8.75) 18.92 (-5.84) 69.72 (+7.23) 19.49 (-4.99)
1.4 wmt18smt

best (x4) 71.04 (+8.93) 18.86 (-5.9) 70.46 (+7.97) 19.03 (-5.45)
Baselines: Retrained wmt18smt

best with our experimental setup
1.5 wmt18smt,gen

best (single) 69.14 (+7.03) 20.41 (-4.35) 68.14 (+5.65) 20.98 (-3.5)
1.6 wmt18smt,ft

best (single) 70.12 (+8.01) 19.84 (-4.92) 69.16 (+6.67) 20.34 (-4.14)
General models trained on 23K+4.5M data
2.1 mt→ pe 67.70 (+5.59) 21.90 (-2.86) 66.91 (+4.42) 22.32 (-2.16)
2.2 {src + mt} → pe 69.32 (+7.21) 20.27 (-4.49) 68.26 (+5.77) 20.90 (-3.58)
2.3 {src,mt}smt

tr → pe 70.46 (+8.35) 19.21 (-5.55) 70.05 (+7.56) 19.46 (-5.02)
2.4 {mt, src}smt

tr → pe 70.26 (+8.15) 19.34 (-5.42) 69.34 (+6.85) 20.05 (-4.43)
Fine-tuning Exp. 2 models with 23K+500K data
3.1 mt→ pe 68.43 (+6.32) 21.29 (-3.47) 67.78 (+5.29) 21.63 (-2.85)
3.2 {src + mt} → pe 69.87 (+7.76) 19.94 (-4.82) 68.57 (+6.08) 20.68 (-3.8)
3.3 {src,mt}smt

tr → peft 71.05 (+8.94) 19.05 (-5.71) 70.33 (+7.84) 19.23 (-5.25)
3.4 {mt, src}smt

tr → peft 70.26 (+8.15) 19.40 (-5.36) 69.31 (+6.82) 19.91 (-4.57)
4.1 Exp3.3smt

ens4ckpt 71.59 (+9.48) 18.78 (-5.98) 70.89 (+8.4) 18.91 (-5.57)
4.2 ensemblesmt(x3) 72.19 (+10.08) 18.39 (-6.37) 71.58 (+9.09) 18.58 (-5.90)
{src,mt}smt

tr → pe with different layer size
5.1 {src,mt}smt

tr → pe 6-6-4 70.85 (+8.74) 19.00 (-5.76) 69.82 (+7.33) 19.67 (-4.81)
5.2 {src,mt}smt

tr → pe 6-4-6 69.93 (+7.82) 19.70 (-5.06) 69.61 (+7.12) 19.68 (-4.8)

Table 11.1: Evaluation results on the WMT APE test set 2016, and test set 2017
for the PBSMT task; (±X) value is the improvement over Raw SMT. The last
section of the table shows the impact of increasing and decreasing the depth of
the encoders and the decoder.

.

truth (pe), i.e., the post-edited version of mt. The original PBSMT system scores
over 62 BLEU points and below 25 TER on test2016 and test2017.

Using a Transformer (src → pe), we test if APE is really useful, or if potential
gains are only achieved due to the good performance of the Transformer archi-
tecture. While we cannot do a full training of the Transformer on the data that
the raw MT engine was trained on due to the unavailability of the data, we use
our PE datasets in an equivalent experimental setup as for all other models. The
results of this system (Exp. 1.2 in Table 11.1) show that the performance is actually
lower across both test sets, -5.52/-9.43 absolute points in BLEU and +5.21/+7.72
absolute in TER, compared to the raw SMT baseline.

We report four results from wmt18smt
best, (i) wmt18smt

best (single), which is the core
multi-encoder implementation without ensembling but with checkpoint aver-
aging, (ii) wmt18smt

best (x4) which is an ensemble of four identical ‘single’ models
trained with different random initializations. The results of wmt18smt

best (single)
and wmt18smt

best (x4) (Exp. 1.3 and 1.4) reported in Table 11.1 are from Junczys-
Dowmunt and Grundkiewicz (2018). Since their training procedure slightly
differs from ours, we also trained the wmt18smt

best system using exactly our experi-
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mental setup in order to make a fair comparison. This yields the baselines (iii)
wmt18smt,gen

best (single) (Exp. 1.5), which is similar to wmt18smt
best (single), however,

the training parameters and data are kept in line with our Transference general
model (Exp. 2.3) and (iv) wmt18smt,ft

best (single) (Exp. 1.6), which is also trained
maintaining the equivalent experimental setup compared to the fine tuned ver-
sion of the Transference general model (Exp. 3.3). Compared to both raw SMT
and Transformer (src→ pe) we see strong improvements for this state-of-the-art
model, with BLEU scores of at least 68.14 and TER scores of at most 20.98 across
the PBSMT testsets. wmt18smt

best, however, performs better in its original setup
(Exp. 1.3 and 1.4) compared to our experimental setup (Exp. 1.5 and 1.6).

The results on the WMT 2018 and 2019 NMT datasets (dev2018 and test2018)
are presented in Table 11.2. The raw NMT system serves as one baseline against
which we compare the performance of the different models. We evaluate the
system hypotheses with respect to the ground truth (pe), i.e., the post-edited
version of mt. The baseline original NMT system scores 76.76 BLEU points and
15.08 TER on dev2018, and 74.73 BLEU points and 16.80 TER on test2018.

dev2018 test2018# Models BLEU ↑ TER ↓ BLEU ↑ TER ↓
Baselines
6.1 Raw NMT 76.76 15.08 74.73 16.80
6.2 wmt18nmt

best 77.74 (+0.98) 14.78 (-0.30) 75.53 (+0.80) 16.46 (-0.34)
6.3 wmt19nmt

best - - 75.96 (+1.23) 16.06 (-0.74)
Fine-tuning Exp. 3.3 on 12k NMT data
7 {src,mt}nmt

tr → pegen,smt 77.09 (+0.33) 14.94 (-0.14) - -
Transference model trained on eScape+ 12k NMT data
8 {src,mt}nmt

tr → pegen,nmt 77.25 (+0.49) 14.87 (-0.21) - -
Fine-tuning model 8 on 12k NMT data
9 {src,mt}nmt

tr → peft 77.39 (+0.63) 14.71 (-0.37) - -
Averaging 8 checkpoints of Exp. 9
10 {src,mt}nmt

tr → peftavg 77.67 (+0.91) 14.52 (-0.56) 75.75 (+1.02) 16.15 (-0.69)

Table 11.2: Evaluation results on the WMT APE 2018 development set for the
NMT task (Exp. 6 and Exp. 10 results were obtained by the WMT 2019 task
organizers). (±X) value is the improvement over Raw NMT.

11.3.2 Single-Encoder Transformer for APE

The two architectures mt→ pe and {src + mt} → pe use only a single encoder.
Table 11.1 shows that mt→ pe (Exp. 2.1) provides better performance (+4.42 ab-
solute BLEU on test2017) compared to the original SMT, while {src + mt} → pe
(Exp. 2.2) provides further improvements by additionally using the src informa-
tion. {src + mt} → pe improves over mt→ pe by +1.62/+1.35 absolute BLEU
points on test2016/test2017. After fine-tuning, both single encoder Transformers
(Exp. 3.1 and 3.2 in Table 11.1) show further improvements, +0.87 and +0.31
BLEU points, respectively, for test2017 and a similar improvement for test2016.
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11.3.3 Transference Transformer for APE

SMT Results In contrast to the two models above, our Transference architecture
uses multiple encoders. The fine-tuned version of the {src,mt}smt

tr → pe model
(Exp. 3.3 in Table 11.1) outperforms wmt18smt

best (single) (Exp. 1.3) in BLEU on
both test sets, however, the TER score for test2016 increases. When ensembling
the 4 best checkpoints of our {src,mt}smt

tr → pe model (Exp. 4.1), the result
beats the wmt18smt

best (x4) system, which is an ensemble of four different randomly
initialized wmt18smt

best (single) systems. Our ensemblesmt(x3) combines two
{src,mt}smt

tr → pe (Exp. 2.3) models initialized with different random weights
with the ensemble of the fine-tuned Transference model Exp3.3smt

ens4ckpt(Exp. 4.1).
This ensemble provides the best results for all datasets, providing roughly +1
BLEU point and -0.5 TER when comparing against wmt18smt

best (x4). In terms
of the number of parameters, wmt18smt

best and our {src,mt}smt
tr → pe model are

the same. Moreover, our {src,mt}smt
tr → pe model uses a single multi-head

cross-attention in the decoder sub-layer, compared to two multi-head cross-
attention mechanisms in wmt18smt

best, therefore our model is 1.07 times faster
for post-editing the testset of 2000 sentences. Furthermore, using more non-
autoregressive encoder layers with fewer autoregressive decoder layers can
significantly accelerate the inference (Xu et al., 2020). Instead of aggregating src
and mt with the autoregressive pe decoder as proposed by Junczys-Dowmunt
and Grundkiewicz (2018), our approach that aggregates src and mt with the non-
autoregressive mt encoder is significantly faster than the wmt18smt

best in inference.

Swapping Inputs Additionally we compare our {src,mt}smt
tr → pe model with

{mt, src}smt
tr → pe, where we reverse the input order, i.e., enc1 and enc2 take mt

and src, respectively, as input. Exp. 2.4 and Exp. 3.4 report {mt, src}smt
tr → pe

and {mt, src}smt
tr → peft respectively, which performed slightly worse than

{src,mt}smt
tr → pe and {src,mt}smt

tr → peft. Surprisingly, fine-tuning does not
help {mt, src}smt

tr → peft for the testset 2016, however, in case of testset 2017,
fine-tuning shows small gain in performance. Moreover, the performance gain
in fine-tuning for the case of {src,mt}smt

tr → peft over {src,mt}smt
tr → pe is

considerably stronger than the performance gain for {mt, src}smt
tr → peft over

{mt, src}smt
tr → pe. Empirically, this confirms our hypothesis that our model

({src,mt}smt
tr → pe) following translators’ two-step approach to PE is beneficial:

first, the source segment is compared to the corresponding translation suggestion,
then corrections to the MT output are applied based on the encountered errors.

NMT Results For the WMT 2018 NMT data we first test our {src,mt}nmt
tr →

pegen,smt model, which is the model from Exp. 3.3 fine-tuned towards NMT data
as described in Section 11.2.2. Table 11.2 shows that our PBSMT APE model
fine-tuned towards NMT (Exp. 7) can even slightly improve over the already
very strong NMT system by about +0.3 BLEU and -0.1 TER, although these
improvements are not statistically significant.
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The overall results improve when we train our model on eScape and NMT data
instead of using the PBSMT model as a basis. Our proposed generic Transference
model (Exp. 8, {src,mt}nmt

tr → pegen,nmt) shows statistically significant improve-
ments in terms of BLEU and TER compared to the baseline even before fine-
tuning, and further improvements after fine-tuning (Exp. 9, {src,mt}nmt

tr → peft).
Finally, after averaging the 8 best checkpoints, our {src,mt}nmt

tr → peftavg model
(Exp. 10) also shows consistent improvements in comparison to the baseline and
other experimental setups. Overall our fine-tuned model averaging the 8 best
checkpoints achieves +1.02 absolute BLEU points and -0.69 absolute TER im-
provements over the baseline on test2018. Table 11.2 also shows the performance
of our model compared to the winner system of WMT 2018 (wmt18nmt

best ) for the
NMT task (Tebbifakhr et al., 2018). wmt18nmt

best scores 14.78 in TER and 77.74 in
BLEU on the dev2018 and 16.46 in TER and 75.53 in BLEU on the test2018. In
comparison to wmt18nmt

best , our model (Exp. 10) achieves better scores in TER on
both the dev2018 and test2018, however, in terms of BLEU our model scores
slightly lower for dev2018, while some improvements are achieved on test2018.
Compared to wmt19nmt

best (Exp. 6.3), our model scores slightly lower, however,
the performance loss is not statistically significant. It is to be noted that the
training strategy in wmt19nmt

best is different: (i) they used their own synthetic cor-
pus prepared using the parallel data provided by the Quality Estimation shared
task69, (ii) they oversampled the APE training data 20 times, and (iii) they applied
multilingual BERT.

Amount of Layers The number of layers (Nsrc-Nmt-Npe) in all encoders and
the decoder for these results is fixed to 6-6-6. In Exp. 5.1, and 5.2 in Table 11.1, we
see the results of changing this setting to 6-6-4 and 6-4-6. This can be compared
to the results of Exp. 2.3, since no fine-tuning or ensembling was performed for
these three experiments. Exp. 5.1 shows that decreasing the number of layers on
the decoder side does not hurt the performance. In fact, in the case of test2016,
we got some improvement, while for test2017, the scores got slightly worse. In
contrast, reducing the encsrc→mt encoder block’s depth (Exp. 5.2) does reduce the
performance for all four scores, showing the importance of this second encoder.

11.3.4 Analysis of Error Patterns

In Table 11.3, we analyze and compare the best performing SMT (ensemblesmt(x3))
and NMT ({src,mt}nmt

tr → peftavg) model outputs with the original MT outputs
on the WMT 2017 (SMT) APE test set and on the WMT 2018 (NMT) devset.
Improvements are measured in terms of number of words which need to be
(i) inserted (In), (ii) deleted (De), (iii) substituted (Su), and (iv) shifted (Sh), as
per TER (Snover et al., 2006), in order to turn the MT outputs into reference
translations. Our model provides promising results by significantly reducing

69http://www.statmt.org/wmt19/qe-task.html
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the required number of edits (24% overall for PBSMT task and 3.6% for NMT
task) across all edit operations, thereby leading to reduced PE effort and hence
improving human PE productivity.

%In %De %Su %Sh
ensemblesmt(x3)
vs. raw SMT +31 +29 +15 +32

{src,mt}nmt
tr → peftavg

vs. raw NMT +6 +2 +4 -2

Table 11.3: % of error reduction in terms of different edit operations achieved by
our best systems compared to the raw MT baselines.

When comparing PBSMT to NMT, we see that stronger improvements are achieved
for PBSMT, probably because raw SMT is worse than raw NMT. For PBSMT,
similar results are achieved for In, De, and Sh, while less gains are obtained in
terms of Su. For NMT, In is improved most, followed by Su, De, and last Sh. For
shifts in NMT, the APE system even creates further errors, instead of reducing
them, which is an issue we aim to prevent in the future.

11.4 Discussion

The proposed multi-encoder based Transformer architecture ({src,mt}smt
tr → pe,

Exp. 2.3) shows slightly worse results than wmt18smt
best (single) (Exp. 1.3) before

fine-tuning, and roughly similar results after fine-tuning (Exp. 3.3). After ensem-
bling, however, our Transference model (Exp. 4.2) shows consistent improvements
when comparing against the best baseline ensemble wmt18smt

best (x4) (Exp. 1.4).
Due to the unavailability of the sentence-level scores of wmt18smt

best (x4), we could
not test if the improvements (roughly +1 BLEU, -0.5 TER) are statistically signifi-
cant. Interestingly, our approach of taking the model optimized for PBSMT and
fine-tuning it to the NMT task (Exp. 7) does not hurt the performance as was
reported in the previous literature (Junczys-Dowmunt and Grundkiewicz, 2018).
In contrast, some small, albeit statistically insignificant improvements over the
raw NMT baseline were achieved. When we train the Transference architecture
directly for the NMT task (Exp. 8), we get slightly better and statistically signifi-
cant improvements compared to raw NMT. Fine-tuning this NMT model further
towards the actual NMT data (Exp. 9), as well as performing checkpoint averag-
ing using the 8 best checkpoints improves the results even further. Compared to
wmt18smt

best and wmt19nmt
best , our architecture is simpler, faster during inference, it

follows the two-step approach of professional post-editors, and has no additional
overhead like BERT.

The reasons for the effectiveness of our approach can be summarized as follows:
(1) Our encsrc→mt contains two attention mechanisms: one is self-attention and
another is cross-attention. The self-attention layer is not masked here; therefore,
the cross-attention layer in encsrc→mt is informed by both previous and future
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time-steps from the self-attended representation of mt (encmt) and additionally
from encsrc. As a result, each state representation of encsrc→mt is learned from the
context of src and mt. This might produce better representations for decpe which
can access the combined context. In contrast, in wmt18smt

best, the decpe accesses
representations from src and mt independently, first using the representation
from mt and then using that of src. (2) The position-wise feed-forward layer
in encsrc→mt of our model requires processing information from two attention
modules, while in the case of wmt18smt

best, the position-wise feed-forward layer in
dectgt needs to process information from three attention modules, which may
increase the learning difficulty of the feed-forward layer. (3) Since pe is a post-
edited version of mt, sharing the same language, mt and pe are quite similar
compared to src. Therefore, attending over a fine-tuned representation from mt
along with src, which is what we have done in this work, might be a reason for
the better results than those achieved by attending over src directly.

Evaluating the influence of the depth of our encoders and decoder shows that
while the decoder depth appears to have limited importance, reducing the en-
coder depth indeed hurts performance, which is in line with Domhan (2018).

11.5 Conclusion

We presented a multi-encoder Transformer-based APE model that repurposes
the standard Transformer blocks in a simple and effective way for the APE task:
Our Transference architecture uses (i) a source encoder (encsrc) which encodes
src information, followed by (ii) a second encoder (encsrc→mt) which can also be
viewed as a standard Transformer decoding block, however, without masking,
and (iii) a decoder (decpe) which captures the final representation from encsrc→mt

via cross-attention. The proposed model outperforms the best-performing system
of WMT 2018 on the test2016, test2017, dev2018, and test2018 data. Moreover,
our model is on par with but simpler than the WMT 2019 best system since our
model does not apply BERT or any conservative factor during inference.

Taking a departure from traditional Transformer-based encoders, which perform
self-attention only, our second encoder also performs cross-attention to produce
representations for the decoder based on both src and mt. We also show that
the encoder plays a more pivotal role than the decoder in Transformer-based
APE, which could also be the case for Transformer-based generation tasks in
general. Our architecture is generic and can be used for any multi-source task,
e.g., (i) multi-source translation, (ii) document translation to model the associated
context, (iii) question generation to generate question from given passage and a
short answer text, (iv) question answering from given passage and question text,
(v) summarization, etc.

Overall, this chapter showed a practical solution how errors in MT systems can
be corrected by automatically learning from human post-edits. It thus contributes
to our third research question, since the reduced amount of errors can improve
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productivity and the avoidance of repetitive errors can reduce feelings of assem-
bly line work, thereby strengthening acceptance of PE. One should also note
the ability of APE systems to learn from a rather small set of (real) post-edits
compared to the training corpora used for MT systems. This shows that already
a limited amount of data gathered in a certain domain or by a certain translator
can be leveraged for APE. The next chapter will consider more practical usage of
APE by going into detail on topics like continuous retraining or discussing how
the amount of training data impacts APE results.

262



Chapter 12
Improving the Post-Editing Process

Through Automatic Post-Editing

After having presented two state-of-the-art APE models, the question remains
how APE can be best integrated to support the PE process. This chapter discusses
studies how strong performance gains through APE are, reviews works exploring
APE for domain adaptation, presents approaches to interactively learn from post-
edits, and shows how the amount of training data impacts APE performance.

In contrast to previous chapters, this chapter is not based on own publications,
but instead reviews recent works that help understand how APE systems like our
Multi-Source Transformer or Tranference models can be employed to improve
the PE process.

12.1 Practical Efficiency Gains Through Automatic Post-
Editing

The main motivation for APE is to reduce human PE effort by automatically
correcting errors before showing MT output to humans (Bojar et al., 2015). Re-
cently, Wang et al. (2020) practically verified this with professional translators.
The model used for this study is a hierarchical approach combining two APE
algorithms (an atomic and a generative model), which are conditionally em-
ployed depending on the quality assumed by running the sample first through
a QE model. Here, the atomic APE model is deployed on the presumably high-
quality MT, while the generative approach, which can apply stronger edits like
paraphrasing, is applied on the presumably lower quality MT. Their results
of a between-subjects human evaluation comparing PE MT to PE APE shows

263



that humans were on average 26.3% faster for PE APE. However, this finding
is limited by the fact that this test was run on WMT 2017 data, stemming from
a PBSMT system. Thus, similar investigations with state-of-the-art NMT and
APE models should be conducted to analyze the extent to which error reductions
achieved through APE yield PE efficiency gains.

12.2 Automatic Post-Editing for Domain Adaptation

Another potential advantage of APE as already pointed out by the WMT 2015
organizers (Bojar et al., 2015) is its ability to adapt MT output to a certain style
as desired by a translator or required for a domain. However, all share tasks
up to WMT 2019 used a domain-optimized MT system and explored if APE can
improve this specialized output further, thereby making investigations of domain
adaptation through APE impossible.

In contrast, the recent WMT APE shared tasks from 2020 and 2021 (Chatterjee
et al., 2020; Akhbardeh et al., 2021) investigated how well adaptation of general
purpose MTs towards a specific domain works with APE approaches. Even
though the amount of real data provided was again rather limited (7000 triples
in each task), participants of 2020 were able to significantly improve the gen-
eral purpose MT on the domain data (both in terms of automatic and human
evaluation), which shows how APE could be employed in the background of
CAT tools to improve the PE experience. With the stronger baseline MT of 2021,
all submissions were still able to significantly outperformed the MT, though
only in terms of human evaluation. APE thus provides a suitable alternative to
other MT adaptation techniques used by Language Service Providers (LSPs) to
offer translators the best MT results for different language pairs and domains. It
would further be interesting to explore the personalization aspect, i.e., translator
adaptation (instead of domain adaptation) with APE, in the hope that a small
amount of PEs gathered from an individual are sufficient to learn and apply
stylistic preferences of that translator. While we know that LSPs now do initial
tests with APE technology and MT market players are also exploring integration
of APE (Crego et al., 2016), its usage for follow-up editing in CAT environments
is far from wide-spread.

12.3 Online Automatic Post-Editing

Our two APE architectures as well as most APE models in the related works were
analyzed in batch mode, which means they are trained on a batch of data and
then applied to a whole test set. This makes sense for evaluating an architecture,
as it enables a fair comparison to other approaches and is sufficient to test if APE
reduces human PE effort (Bojar et al., 2015). For practical use cases, the batch
mode would simply imply piping translation jobs first through MT and then
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through APE to reduce errors for human PE. Depending on the chosen first-stage
MT system and the APE model, we have seen that significant improvements
are indeed possible with this straight-forward implementation. For any new
translation job, one could thus first choose the best MT model available in terms
of domain-adaptation, and then start capturing human post-edits. Instead of
retraining the full MT model (which is not even possible without access to the
inner workings of the model), one could then use the captured human post-edits
for training an APE model reducing MT errors. As we have seen, APE requires
much less (real) data than MT systems, thereby making this feasible in practice.

However, the problem of correcting repetitive mistakes, which translators partic-
ularly dislike about PE (O’Brien and Moorkens, 2014), would not be completely
solved, as capturing data and re-training in batch mode also requires time for
APE. This is why not only APE research, but also CAT tools need to focus on
continuous adaptations of the MT/APE output, and tools like Lilt indeed offer
such a feature (Balashov, 2020). Dynamic adaptations were originally explored
in academic projects like MateCAT to improve a PBSMT engine from post-edits
(Bertoldi et al., 2013). For this, they proposed a cache-based adaptation technique
that “dynamically stores target n-gram and phrase-pair features used by the
translator”. Using a recency decay, they reward features stored in the cache as
well as similar occurrences in the same document. This way, they “mix the large
global (static) model with a small local (dynamic) model estimated from recent
items” in the history. The local model is then combined with the global model
during decoding, by scoring matches in both global static and local dynamic
phrase tables. The goal of this combination is to translate “more consistently
with the user preferences”. A technical evaluation showed that the cache-based
adaptation is useful to improve the quality, but the gains were not statistically
significant. Overall, the authors concluded that cache-based adaptation is effec-
tive with repetitive texts while not hurting with non-repetitive text. However, a
user evaluation of the gains in actual PE was not conducted in this work.

Since then many researchers explored similar adaptive NMT approaches to avoid
repetitive mistakes. Most interesting for APE is probably the investigation by
Negri et al. (2018a), exploring an online APE approach that learns from each
human post-edit, again targeting the problem of correcting repetitive mistakes
in PE. The idea is to improve the APE model on-the-fly which is essential for
its integration in a CAT tool, and stands in contrast to the shared task that only
explored the batch mode. Their online adaptation works in several steps: (1)
Before human PE, a knowledge base is queried for the (src, mt, pe) triples most
similar to the (src, mt) of the current segment. (2) These similar triples are used to
update the APE model for a few training iterations. (3) The updated APE model
produces an ape proposal, which a human post-edits (pe). This new (src, mt, pe)
triple is then used to again retrain the APE model and extend the knowledge
base for the future. To gain experimental results, they simulate human post-edits
and apply APE on generic and specialized as well as static and adaptive NMT
models, representing different performance/cost trade-offs that LSPs can choose:
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1. a ‘generic‘ model represents the case where a LSP simply uses a black-box
off-the-shelf NMT engine, therefore requiring no MT expertise

2. a ‘generic online‘ model is an online version of the ‘generic‘ model learning
from human post-edits, thus representing the case where the LSP has access
to an online NMT system and the knowledge to adapt it

3. a ‘specialized‘ system is a fine-tuned version of the ‘generic‘ model, mean-
ing a LSP with access to customer data and the inner working of a batch
NMT

4. a ‘specialized online‘ system using in-domain data to fine-tune the model
in an online approach, thus requiring the LSP to have customer data and
know the inner workings of an online NMT engine

Similarly, the authors propose an ‘online APE‘ that is initially generic but learns
from PE-data. Their results show that ‘online APE‘ significantly improves the
‘generic‘, ‘generic online‘, and ‘specialized‘ NMT approaches, however is unable
to improve over the ‘specialized online‘ NMT approach. Especially the improve-
ment over ‘generic online‘ is interesting as it shows that APE is more reactive
to human corrections, as it can “leverage richer information in the form of (src,
mt, pe) instances”. Not being able to improve over ‘specialized online‘ (on the
explored data) shows that APE cannot outperform a competitive online NMT en-
gine. However, APE has several advantages over ‘specialized online‘, namely it
does not rely on fine-tuning on a large in-domain corpus but still achieves similar
results. Furthermore, and as already pointed out by the share task organizers of
WMT 2015 (Bojar et al., 2015), APE does not require access to the inner workings
of the online NMT, but can be considered independent. Thus, the authors argue
that even though competitive online NMT solutions perform similar to online
APE, the bottlenecks of collecting enough parallel sentences, having access to the
inner workings, and having the computational power for fine-tuning on the large
data, impose a disadvantage of adaptive NMT compared to APE.

12.4 The Impact of Training Data Amount on Automatic
Post-Editing

Based on these papers it seems like APE is useful in several situations, but cannot
outperform a strong in-domain NMT system, indicating the limitations of at
least using neural APE to improve strong in-domain NMT. Chollampatt et al.
(2020) recently questioned this, as they found that even the most modern APE
approaches rely on small datasets of actual human post-edits (combined with
large artificial datasets), which is also common practice at WMT. In their work,
they compile a new EN-DE corpus called SubEdits containing more than 161k
triplets, consisting of actual human post-edits of movie subtitles from a strong
in-domain NMT model. Using this corpus, they show that state-of-the-art neural
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APE approaches indeed can improve over strong in-domain NMT models when
trained on a larger number of actual PE data. Apart from TER and BLEU-based
evaluation, their human evaluation (comparing the NMT, APE, and PE versions
instead of direct assessment), also agreed that the APE output is better than the
NMT output, and the fact that the human PE labels were still rated highest shows
that the crowd-based human post-edits are of high quality.

An investigation of the amount of data required shows that “size does matter”
and that the improvement starts to slow down after 100k samples (while still
increasing). Thus, the authors conclude that previous APE studies have only
plateaued due to limited data.

They further investigated if artificial data helps by adding portions of the eSCAPE
data (as an out-domain artificial set) and a newly created SubEscape dataset
created using the eSCAPE approach but on in-domain data. They find that (i)
using only artificial data the NMT cannot be beaten, (ii) using SubEscape in
combination with SubEdits however does result in small improvements over
using SubEdits alone.

An analysis using the WMT data and SubEdits shows that similar to NMT, APE is
very domain-dependent and thus in-domain data is crucial to improve in-domain
NMT. A qualitative analysis further shows that APE (i) can fix incorrect named-
entity translations, (ii) corrects undertranslations, (iii) has the same problems
with context as sentence-level NMT and therefore may generate wrong pronouns.

12.5 Conclusion

To summarize, this chapter showed that the reduction in errors through APE
indeed leads to performance gains in PE. Furthermore, the recent WMT 2020
shared task was able to verify that APE indeed is suitable to adapt general
purpose MT models to a certain domain and achieves large performance gains
already through limited amounts of data. We then discussed how APE can be
used in an online setting, where the model is updated before and after each new
post-edit. This approach outperforms even specialized NMT models, and is on
par with specialized online NMT models, while requiring less domain-specific
data, no access and knowledge about the internal workings of the NMT, and less
computational cost, thus being a valuable extension for LSPs. We have also seen
that given sufficiently many post-edits, it is also possible to improve over highly
specialized MT systems by leveraging the specifics of the PE data.

In contrast to the previous chapters, this chapter did not present published
new findings on APE. Instead, it shows how approaches like the Multi-Source
Transformer or Transference model can improve productivity and avoid repetitive
errors in practice by looking at related studies. The chapter thus addresses our
third research question by viewing our APE contributions in a bigger picture and
outlining next steps to integrate the models into tools like MMPE.
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Part V

Overall Conclusion
After the three main parts on explicit multi-modal interactions for PE
of MT (Part II) , implicit multi-modal sensor input for modeling CL
during PE (Part III), and multi-source APE to automatically correct
repetitive errors in MT output (Part IV), this final part provides an
overall conclusion. We first summarize the whole dissertation, focus-
ing on the contributions made (chapter 13). Then, we discuss various
possibilities for future research (chapter 14).
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Chapter 13
Summary & Contributions

This chapter summarizes the work presented and discusses how the individual
parts can improve human-machine collaboration for translation. Apart from high-
lighting the various contributions, we also discuss potential negative implications
of this work.

13.1 Summary

Overall, this dissertation aimed to simplify the complex and cognitively chal-
lenging PE task by exploring novel multi-modal interaction possibilities for CAT
environments, by considering translators’ CL, and by learning from previous
post-edits to automatically correct repetitive mistakes.

We first introduced the Post-Editing (PE) task, discussing its advantages and
disadvantages, thereby motivating our research. Furthermore, we provided an
in-depth review of a broad range of related research upon which this dissertation
builds (Part I). Afterwards, we investigated improvements to the PE process by
following three research directions.

Motivated by the finding that interaction patterns in PE are very distinct from
those in traditional translation from scratch, we explored whether modalities
other than mouse and keyboard might be well-suited for the PE task (Part II,
RQ1). We first conducted an elicitation study with professional translators,
indicating that a combination of pen, touch, and speech could well support
common PE tasks (Herbig et al., 2019a). Afterwards, we built MMPE, the first
translation environment combining these input modalities, allowing users to
directly cross out or hand-write new text, drag and drop words for reordering,
or use spoken commands to update the text in place (Herbig et al., 2020c). An
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evaluation of MMPE with professional translators (Herbig et al., 2020b) suggest
that pen and touch interaction are suitable for deletion and reordering tasks;
however, they are of limited use for longer insertions. On the other hand, speech
and multi-modal combinations of select and speech are considered suitable for
replacements and insertions but offer less potential for deletion and reordering.
Overall, participants were enthusiastic about the new modalities and saw them
as good extensions to mouse and keyboard, but not as a complete substitute.
We further leveraged the more detailed subjective feedback to refine MMPE by
improving the interface layout and enhancing individual components (Herbig
et al., 2020d). We also integrated eye tracking functionality as an input modality
that can be used in combination with speech commands. Guided by another
elicitation study, we proposed and implemented a set of mid-air hand gestures
as a mouse replacement for PE (Jamara et al., 2021). In a practical evaluation,
gesture-based PE turned out quite promising, especially when considering that
our participants use mouse and keyboard every day but are novices to gesture
interaction. Finally, we used MMPE to explore word-level QE during PE (Shenoy
et al., 2021), showing that a QE quality level of at least 80% F1 sets the approximate
boundary where word-level QE starts helping translators, and for these QE
quality levels, a visualization showing the uncertainty of the model is preferred.

Apart from the interaction patters, we further explored the cognitive dimension
of PE (Part III, RQ2). Initial interviews revealed that most translators would see
value in automatically receiving additional resources when a high CL is detected
during PE (Herbig et al., 2019a). Thus, robust approaches to automatically esti-
mate CL during PE could help with a better management of cognitive resources.
We therefore built a multi-modal CL estimation framework combining a wide
range of physiological, behavioral, and performance measures, many of which
have not been previously explored in the translation domain. Using this frame-
work (at different stages of implementation) we conducted 3 studies to estimate
perceived CL: one with translation students (Herbig et al., 2019c), one with pro-
fessional translators (Herbig et al., 2021), and one with students in an e-learning
task to explore how specific the measures are to PE (Herbig et al., 2020a). We
formulated the CL estimation problem as a prediction task, mapping the various
captured sensor data to the subjectively reported perceived CL. In all three ex-
periments we saw that the multi-modal approach performs best, followed by eye,
heart and skin measures, although the performance differences slightly differed
between the studies. Apart from understanding which sensors are well suited for
CL estimation, we surveyed potential users which data sources are more likely
to be shared and which are seen as more critical for cognition-aware systems
(Herbig et al., 2019d). The results show that behavioral data like keyboard input
and widespread physiological sensors would be shared without major concerns,
while microphone or camera recordings as well as less common physiological
data would require strong improvements to make disclosure worthwhile.

Finally, we presented works on Automatic Post Editing to tackle the problem of
repetitive mistakes by the MT engine (Part IV, RQ3). We proposed two new archi-
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tectures that can adapt any black-box MT system to a set of captured post-edits:
the Multi-Source Transformer (Pal et al., 2018), and the Transference Architecture
for APE (Pal et al., 2019, 2020). Both architectures build upon the Transformer
model, but modify it for the multi-source setting, where both src and mt are
considered to create the pe hypothesis. We demonstrated that especially the
Transference model achieves state-of-the-art performance while having a com-
paratively simple and efficient architecture. Finally, we showed that APE can
indeed be used to adapt generic MT systems to certain domains based on a
limited amount of data, that online APE can quickly react to newly captured
post-edits, and that given sufficient training data, APE can even outperform
highly domain-optimized MT engines.

Overall, these three research directions can enhance the PE process through multi-
modal input for CAT tools, multi-modal modeling of and adaptation to CL, and
multi-source APE to automatically correct repetitive errors in MT output.

13.2 Contributions

Our contributions lie at the intersection of HCI and NLP and use recent advances
in both fields to improve the PE process. This section summarizes the main
contributions, first grouped into the three research questions tackled by this
dissertation (see section 1.3), followed by highlighting the main design, technical,
and theoretical findings.

Regarding explicit multi-modal input for PE (RQ1), the outcome of our initial
elicitation study shows the design space of interaction modalities for different
PE operations, as well as insights on hardware setup and interface design of
CAT tools (chapter 3, Herbig et al. (2019a)). Based on this theoretical foundation,
the main contribution is the development and testing of MMPE, a CAT tool
focusing on PE that supports various input modalities including hand-writing,
touch reordering, speech commands, mid-air hand gestures, and multi-modal
combinations thereof (chapter 4, 5, Herbig et al. (2020c,d); Jamara et al. (2021)).
The prototype development, the subjective feedback by participants, and the
iterative refinements based on the feedback contribute general CAT tool design
insights, and particularly outline how to integrate modalities other than mouse
and keyboard into the PE process. Finally, the structured test of the modalities for
each individual PE task (Herbig et al., 2020b; Jamara et al., 2021) clearly indicates
the strengths and weaknesses of the explored modalities, thereby guiding future
CAT developers and allowing them to focus on the most relevant ones.

Regarding the cognitive dimension of PE through implicit multi-modal sensor
input (RQ2), we contribute ideas towards cognition-aware CAT tools based on
interviews with professional translators (chapter 6, Herbig et al. (2019a)). As
steps towards these goals, our CL estimation framework offers unified access to
a broad range of CL measures from different sensor modalities, and can therefore
be seen as a technical contribution of its own (chapter 7, Herbig et al. (2019c,
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2021, 2020a)). Exploring this framework in three studies shows which modalities
and modality combinations perform better or worse for CL estimation (chapter 8,
Herbig et al. (2019c, 2021, 2020a)). These findings, in combination with our
final survey-based investigation of users’ privacy concerns and willingness to
share sensor data (chapter 9, Herbig et al. (2019d)), can guide developers of such
cognition-aware CAT tools that aim at both high accuracy in estimating CL and
high user acceptance.

Regarding learning from post-edits in the form of Automatic Post-Editing
(RQ3), we contribute two APE model architectures combining both source text
and MT proposal to automatically correct errors before performing human PE
(chapter 10, 11, Pal et al. (2018, 2019, 2020)). Their analyses on publicly available
datasets further advance the search for suitable multi-source APE architectures.
We also theoretically discuss how APE can be integrated into the PE process to
avoid correcting repetitive mistakes, its suitability to adapt generic MT engines
to certain domains, and its competitiveness in comparison to highly domain-
optimized MT systems (chapter 12).

Overall, this dissertation provides the following design contributions: We ana-
lyzed the general design space of interaction modalities for PE in an elicitation
study (chapter 3, Herbig et al. (2019a)) and contribute a range of insights on
CAT interface design based on the iterative development of MMPE (chapter 4, 5,
Herbig et al. (2020c,d); Jamara et al. (2021)). Furthermore, we contribute ideas
how to design CAT tools that adapt to the users’ CL based on interviews with
professional translators (chapter 6, Herbig et al. (2019a)).

As technical contributions this dissertation offers MMPE, a multi-modal CAT
tool that is available open-source (chapter 4, 5, Herbig et al. (2020c,d)). Another
engineering contribution is our CL estimation framework, that provides unified
access to a broad range of sensors for CL analyses (chapter 7, Herbig et al. (2019c,
2021, 2020a)). Finally, two novel APE architectures have been proposed and
implemented, the latter showing state-of-the-art results in terms of automatically
correcting repetitive MT errors (chapter 10, 11, Pal et al. (2018, 2019, 2020)).

Regarding theoretical contributions, this dissertation explores various concepts
from HCI in the field of PE: We show in structured tests which interaction modali-
ties are suitable for which PE tasks, first in elicitation studies (chapter 3, chapter 5,
Herbig et al. (2019a); Jamara et al. (2021)), followed by practical experiments
with the MMPE environment (chapter 4, chapter 5, Herbig et al. (2020b); Jamara
et al. (2021)). Apart from that, we explore a broad range of CL measures in
three studies, showing which features perform better and worse for estimating
perceived CL (chapter 8, Herbig et al. (2019c, 2021, 2020a)). These studies are
complemented by an investigation of privacy concerns regarding sensor usage
(chapter 9, Herbig et al. (2019d)). Furthermore, our APE architectures are thor-
oughly analyzed and compared to the state of the art (chapter 10, 11, Pal et al.
(2018, 2019, 2020)) and we theoretically discuss how such APE models can be
leveraged to avoid repetitive corrections during PE (chapter 12).
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13.3 Individual Contributions

Large parts of this thesis are based on previous publications as a result of joint
work with researchers and students. This section provides a list of publications
(in the same order as the initial list of publications) and specifies to which parts
of the work this dissertation’s author contributed.

(Herbig et al., 2019a) Developing the main idea, planning and conducting the elicita-
tion study, data analysis, paper writing.

(Herbig et al., 2020b) Developing the main idea, implementing MMPE, planning and
conducting the evaluation, data analysis, paper writing.

(Herbig et al., 2020a) Developing the main idea, implementing the data capturing
prototype, planning the study, data analysis, paper writing.

(Pal et al., 2020) Planning and running evaluation analyses, paper writing.

(Jamara et al., 2021) Developing the main idea, guiding the elicitation study plan-
ning and analysis, guiding the implementation, prototype eval-
uation planning, supporting data analysis, paper writing.

(Shenoy et al., 2021) Developing the main idea, guiding the artificial data creation
and study planning, guiding the integration into MMPE, sup-
porting data analysis, paper writing.

(Herbig et al., 2019c) Developing the main idea, implementing the data capturing
prototype, planning and conducting the study, data analysis,
paper writing.

(Herbig et al., 2021) Developing the main idea, implementing the data capturing
prototype, planning and conducting the study, data analysis,
paper writing.

(Herbig et al., 2019d) Developing the main idea, designing the questionnaire, data
analysis, paper writing.

(Herbig et al., 2020c) Developing the main idea, implementing MMPE, planning and
conducting the study, data analysis, paper writing.

(Pal et al., 2018) Data selection for fine-tuning, planning and running evaluation
analyses, paper writing.

(Pal et al., 2019) Planning and running evaluation analyses, paper writing.

(Herbig et al., 2020d) Developing the main idea, implementing improvements to
MMPE including eye tracking component, paper writing.

(Herbig et al., 2019b) Developing the main idea, paper writing.
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(Jamara, 2021) Developing the main idea, supervision of the Master’s thesis
including guidance on (1) planning and evaluating the studies,
(2) integration of gestures into MMPE, and (3) thesis writing.

(Shenoy, 2021) Developing the main idea, supervision of the Master’s thesis in-
cluding guidance on (1) planning and evaluating the user study,
(2) conceptualizing artificial QE generation, (3) integration into
MMPE, and (4) thesis writing.

(Akmal, 2021) Developing the main idea, supervision of the Master’s thesis in-
cluding guidance on (1) planning and evaluating the user study,
(2) conceptualizing interactive PE visualizations, (3) integration
into MMPE, and (4) thesis writing.

(Wang, 2021) Developing the main idea, supervision of the Master’s thesis
including guidance on (1) planning and evaluating the user
study, (2) outputting high-quality but diverse MT proposals,
(3) integration into MMPE, and (4) thesis writing.

13.4 Possible Unintended Drawbacks and Negative Im-
plications

While research in general is targeted towards knowledge gain and improvements
in life and work conditions, it can cause negative unintended drawbacks. In our
case, the contributions made aim to make PE quicker and less demanding. At the
same time, however, any performance improvements gained could lead to higher
expectations in terms of translation volume per day, which could be coupled
with lower payment per word, thereby increasing instead of reducing pressure
on the human translator. As with any technology, it is therefore crucial to ensure
appropriate use: the technology itself is neither good nor bad, the way it is used
defines whether its strengths or weaknesses come to life.

Furthermore, this dissertation proposed considerable data capturing, e.g., for
analyzing interactions within MMPE, for estimating CL, or for gathering training
material for domain-adaptations through APE. When deploying such systems
in practice, one should revisit these data capturing possibilities and ensure data
sparsity, as well as security measures against inappropriate tracking or surveil-
lance. Most critically in this regard is the tracking of speech input used for voice
commands, as well as the physiological and behavioral data for CL estimation.
For the former, organizations should aim for secure local ASR and video capture
systems with very restricted access and ideally even without data logging. For
the latter, our study on privacy concerns and willingness to share data gives
insights into the sensitivity of the different CL measurement approaches, but
naturally only necessary data should be stored, with restricted access and ideally
only in anonymized form.
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Chapter 14
Future Work

This chapter closes the thesis by outlining further possible follow-up studies to
better understand the presented technologies, discussing how our contributions
can be combined, and by proposing the integration of further interaction modali-
ties or language technologies to continue improving the collaboration between
human translators and MT systems.

14.1 Exploring Eye Tracking for Multi-Modal Input

As discussed in chapter 5, MMPE now also supports eye tracking as an additional
input modality. Even though participants in our initial elicitation study (chapter 3)
did not expect eye tracking to be suitable for PE, their comments showed that
they seldomly considered it in combination with speech commands. At the same
time, our multi-modal input in the form of cursor placement followed by a speech
command lead to comments that one would “have to do two things at once”,
which could be resolved by eye input. Thus, our implementation of eye and
speech should be tested in practice once the pandemic allows this. Furthermore,
the combination of eye tracking and keyboard should be explored, e.g., in a
similar approach to ReType (Sindhwani et al., 2019) but modified towards the
PE setting. We are also interested to see if the visualization of the last fixations
on source and target segments that we implemented similar to the GazeMarks
(Kern et al., 2010) approach can further facilitate PE.
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14.2 Further Studies on Modality Usage

Our presented studies on multi-modal interaction for PE MT output tested the
different modalities in a very structured way (chapter 4). This allowed us to fairly
compare the different modalities for the different tasks. At the same time, the
guided nature of the test made it impossible to see which interaction modalities
professional translators would choose for which editing task when having the
freedom of choice. Would they stick to certain modalities for certain tasks?
Would they correct multiple error types in a segment with the same or different
modalities? Would certain modalities turn out better or worse than initially
thought after a longer usage? Investigating these questions can yield further
knowledge about modality usage during PE, so we hope that researchers and
practitioners explore these ideas with our open-source MMPE prototype.

Of course, the individual modalities could also be further adapted and re-
evaluated based on the latest publications: E.g., Fan et al. (2021) presented
an algorithm for eyes-free speech interfaces based on large pre-trained language
models that can (1) automatically remove colloquial inserts and (2) estimate
whether a user wants to replace or insert text based on the target words, which
might also improve speech input for PE.

14.3 Automatic Adaptations to Estimated Cognitive Load

Throughout this thesis, we have seen that PE is a cognitively demanding task
and discussed approaches to estimate CL during PE. Future research should
extend our behavioral measures to also include pen-, touch-, and speech-based
features which could enhance CL estimation within MMPE. Furthermore, while
several of our studies (chapter 8) showed the general feasibility of CL adaptations,
translators’ proposals for cognition-aware CAT tools discussed in chapter 6
should be implemented and explored in practice. Predictions of CL on shorter
periods of time could further allow quicker adaptations to the user state as
proposed by Schultheis and Jameson (2004). Overall, this would yield a system
supporting multi-modal explicit input for text editing, as well as multi-sensory
input for CL adaptations.

14.4 Practical Studies on Automatic Post-Editing

Part IV presented state-of-the-art APE systems and discussed how these can be
leveraged for efficient PE. These models should be integrated into MMPE to
explore their suitability to avoid repetitive mistakes and domain-/translator-
adaptations in practice. While research on APE itself is growing year after year,
investigating its practical use for the discussed benefits remains underexplored.
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14.5 Integrating Multiple Machine Translation Proposals

In this thesis, we limited the concept of PE to editing the single best MT proposal.
MT engines can however easily generate a variety of translation proposals for a
sentence. As Balashov (2020) states, human brains are precision- and not recall-
oriented, meaning that we are “much better at selecting the best candidate from
a list of suggestions than at generating new suggestions from scratch”. Thus,
providing high quality and diverse options to chose from (e.g., using Diverse
Beam Search by Vijayakumar et al. (2016)), a translator could find a proposal that
is exactly or very close to a satisfying translation. Of course, the “diverse” aspect
is essential, as seeing 10 very similar proposals most likely increases CL through
additional information processing. Overall, we hypothesize that especially for
short sentences, offering high quality but diverse translations with proper change
highlighting could be beneficial for post-editors, whereas for longer sentences too
many proposals could overwhelm the human. Wang (2021) presents our initial
implementation and pre-study on the topic, which should be used as a basis to
improve the prototype and run a full-scale study with professional translators.

14.6 Supporting Interactive Post-Editing

Instead of only varying the amount of proposals that the translator can choose
from for PE, one should also explore interactive PE using our multi-modal setting.
So instead of having the MT work first and the human afterwards, the two could
work interleaved, with the MT proposing a translation, the human correcting a
part therein, the MT adapting to this change and re-proposing another translation.
Some tools like DeepL already do that by showing alternatives for the current
word from the beam search process. However, DeepL’s current visualization only
presents alternatives for the clicked position, without showing if choosing this
alternative will only replace the word by a synonym, or if the whole remainder of
the sentence adapts. Better visualization, e.g., clustering the alternatives by what
they will change, or showing the MT output in a graph form, could offer a lot
of potential. Some first investigations of that topic have been pursued in Akmal
(2021), however, proper studies with professional translators and combining such
interactive PE with pen and finger touch input should be explored in the future,
as they might make the keyboard almost superfluous.

14.7 Mobile Post-Editing

Furthermore, as MT gets better and better, and fewer and fewer mistakes need
to be corrected, we hypothesize that the desktop setting becomes less relevant,
wheras the tablet setting will gain popularity. While we believe that many of our
findings will be directly applicable to the tablet mode (touch/pen/speech/multi-
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modal input), further studies investigating if additional changes are required
should be conducted. Furthermore, the integration of interactive PE or multiple
MT outputs, leading to less required manual changing (at the cost of more
selection) might make tablets even more relevant. So far, apart from few studies
on the Kanjingo app (O’Brien et al., 2014), most CAT studies and products ignore
the mobile setting.

14.8 Adaptations for Context-Aware Machine Translation

A hot topic in MT research is also to move away from systems that translate
sentence by sentence towards context-aware document-level MT. These mod-
els can generate better MT proposals for PE, as coreference chains etc. can be
considered. Future research should therefore explore changes to CAT interfaces
that help translators analyze context or visualizations of the internal workings
of document-level MT systems (e.g., which part of the previous sentence lead to
the choice of word form in this sentence). This interface aspect is so far a rather
unresearched field, which might however offer a lot of potential as MT systems
are becoming better and better at understanding context.

14.9 Exploration in Related Contexts

Furthermore, studies in very related contexts like text review and proofreading
should be conducted to explore which of our findings are also generalizable
to these fields. Other interesting paths of research include CAT tools for sign
language translation or audiovisual data, which are gaining importance. E.g.,
one could adapt MMPE to support YouTube subtitle creation and translation
by showing the video alongside the automatically generated ASR output that
requires correction.

14.10 Closing Remarks

This thesis holistically explored multi-modality for the task of Post-Editing Ma-
chine Translation. We considered both multi-modal interaction possibilities to
correct the MT output more efficiently, and multi-modal sensor usage to model
the translators’ cognitive load while post-editing. Enhanced with interview and
questionnaire results, we further provide lots of expert feedback on how the col-
laboration of human and machine for the translation task can be further enhanced.
We also looked at supportive language technologies, namely APE and QE, and
how such AI components can be integrated into the process. By open sourcing the
main prototype and large parts of the data, we hope to simplify future research
that builds upon our findings. Given the various ideas for additional studies,
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extensions to the systems, and a wider, namely more interactive, consideration of
PE, we hope that some of these ideas will be picked up and explored in future
research. Naturally, future trends in both HCI and NLP need to be considered
to make sure that the latest technologies are investigated when trying to further
advance the human-AI collaboration for translation.
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