

Motivation

- Internship at automotive company
- Family in industry
- Popularity

Abbreviations

Abbreviation	Meaning
AD	Autonomous Driving
AV	Autonomous Vehicle
DL	Deep Learning
DLM	Deep Learning Model

Overview

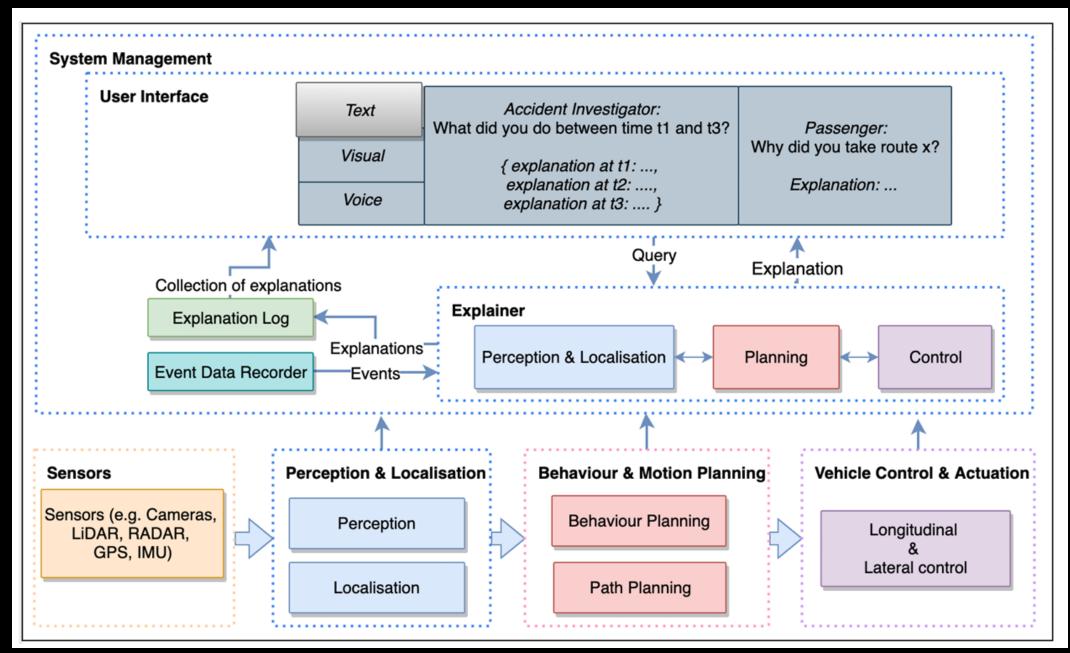
- Study content
- Results
- Critique

Explanations in AD: A Survey

- IEEE
- November 2021
- 272 citiations

Explanations in AD: A Survey - Content

- Survey for behaviour of AVs
- Need for XAI for AVs
- Examination of AV regulations and standards
- Explainable AD operations
- Framework for AV explainability
- Fundamental knowledge for researchers


Need for XAI for AVs

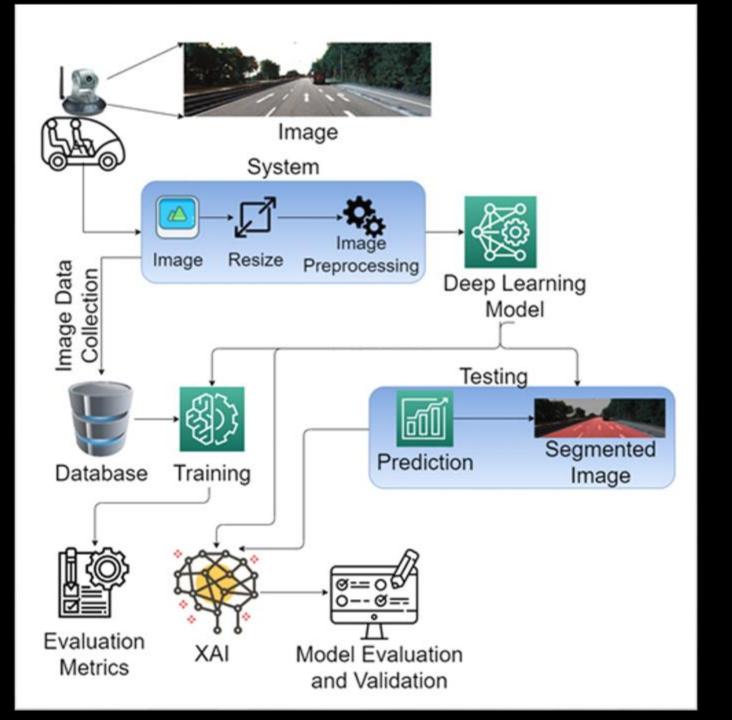
- Trust
- Safety
- Future
- Decisions

Aim	Standard & Description	Stakeholder			
	ISO 19237:2017 Pedestrian detection and collision mitigation systems				
	ISO 22078:2020 Bicyclist detection and collision mitigation systems				
	ISO 26262:2011: Road vehicles – Functional safety. An international standard for				
	functional safety of electrical and/or electronic (E/E) systems in production automobiles				
	(2011). It addresses possible hazards caused by the malfunctioning behaviour of E/E				
	safety-related systems, including the interaction of these systems.				
	ISO 21448:2019: Safety Of The Intended Functionality (SOTIF). Provides guidance				
	on design, verification and validation measures. Guidelines on data collection (e.g. time	Class B and C			
	of day, vehicle speed, weather conditions) (2019). (complementary to ISO 26262).	AV Developers,			
	UL 4600: Standard for Safety for Evaluation of Autonomous Products. a safety	Regulators,			
	case approach to ensuring autonomous product safety in general, and self-driving cars	System Auditors,			
	in particular.	Accident Investi-			
	SaFAD: Safety First for Automated Driving. White paper by eleven companies	gators,			
	from the automotive industry and automated driving sector about frameworks for	Insurer			
Human Safety	development, testing and validation of safe automated passenger vehicles (SAE Level				
	3/4).				
	RSS (Intel) / SFF (NVIDIA): Formal Models & Methods to evaluate safety of AV				
	on top of ISO 26262 and ISO 21448 (proposed by companies).				
	IEEE Initiatives: "Reliable, Safe, Secure, and Time-Deterministic Intelligent Systems				
	(2019)"; "A Vision for Prioritizing Human Well-being with Autonomous and Intelligent				
	Systems" (2019); "Assessment of standardization gaps for safe autonomous driving (2019)".				
	The Autonomous: Global safety reference, created by the community leading automo-				
	tive industry players, which facilitates the adoption of autonomous mobility on a grand				
	scale (2019).				
	ISO/TR 21707:2008: Integrated transport information, management, and control—				
	Data quality in intelligent transport systems (ITS). "specifies a set of standard				
	terminology for defining the quality of data being exchanged between data suppliers	Class A and C			
	and data consumers in the ITS domain" (2018).	Passengers,			
	ISO 13111-1:2017: The use of personal ITS station to support ITS service provision	Auxiliary			
	for travellers. "Defines the general information and use cases of the applications based	Drivers,			
	on the personal ITS station to provide and maintain ITS services to travellers including	Pedestrians,			
	drivers, passengers, and pedestrians" (2017).	Regulators,			
	ISO 15075:2003: In-vehicle navigation systems—Communications message set	System Auditors,			
	requirements. "Specifies message content and format utilized by in-vehicle navigation	Accident Investigators			
Information/Data		Insurers			
Exchange	ISO/TR 20545:2017: Vehicle/roadway warning and control systems. "Provides the	msurers			
_	results of consideration on potential areas and items of standardization for automated				
	driving systems" (2017).				
	ISO 17361:2017: Lane departure warning.				
	ISO/DIS 23150: Data communication between sensors and data fusion unit for	ī			
	automated driving functions.				

Explainable Autonomous Driving Operations

- Perception
- Localisation
- Planning
- Vehicle Control

Critique

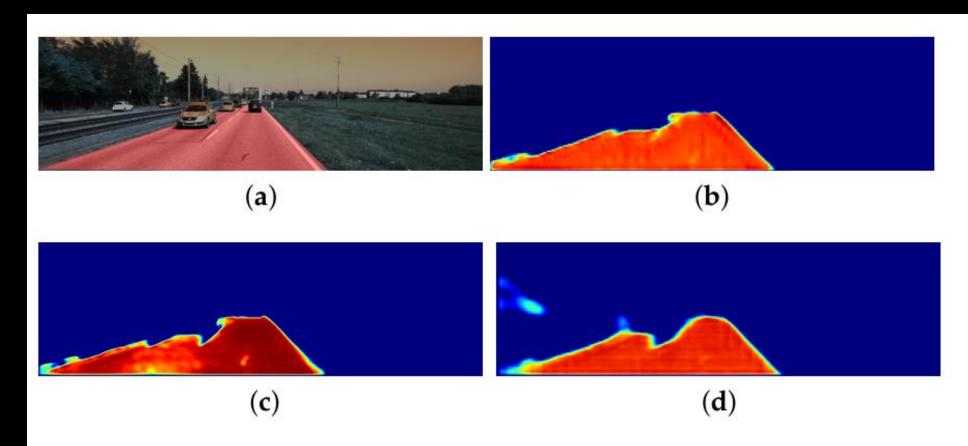

- Good if no previous knowledge
- "irrelevant" sections
- regulations
- Future research directions

OD-XAI: Explainable AI-Based Semantic Object Detection for Autonomous Vehicles

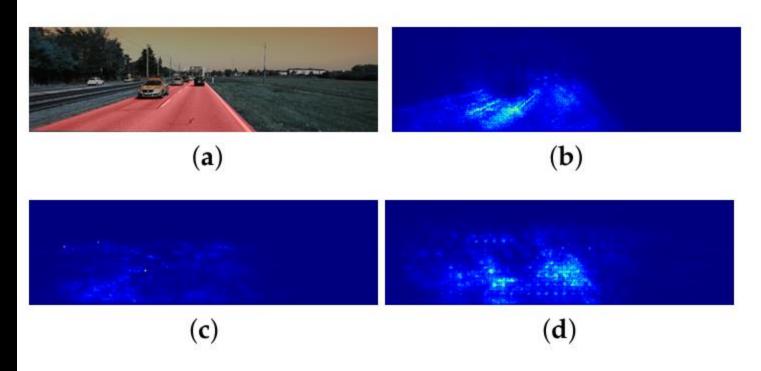
- Appl. Sc. Journal
- May 2022
- 49 citations

OD-XAI: Explainable AI-Based Semantic Object Detection for Autonomous Vehicles - Content

- Detection of road using DLM
- XAI to understand predictions and decisions
- XAI integrated AV system to improve explainability of black-box models



Approach


Model	Layers	Model Parameters
ResNet-18	111	17.271.149
ResNet-50	215	39.030.637
SegNet	65	73.613.762

XAI Integration

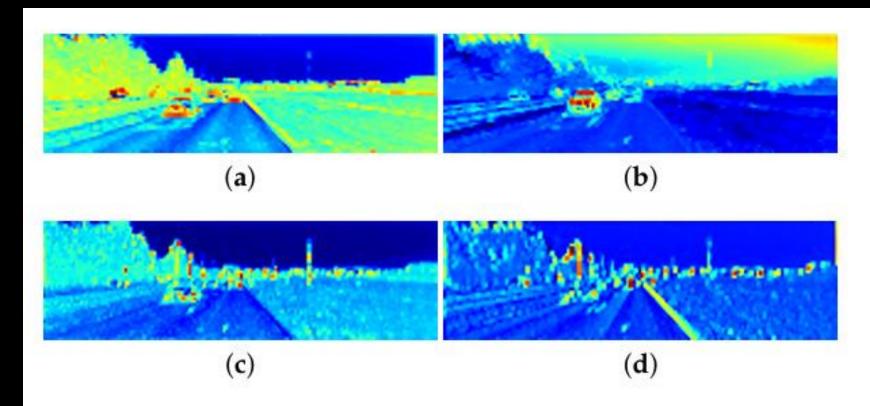

- Grad-CAM
- Saliency Map
- Observational Explanations

Figure 6. (a) Original road image from the KITTI dataset with an overlapped semantic map. (b) Grad-CAM results of ResNet-18 model. (c) Grad-CAM results of the SegNet model. (d) Grad-CAM results of the ResNet-50 model.

Figure 8. (a) Original road image from the KITTI dataset. (b) Saliency Map results of the ResNet-18 model. (c) Saliency Map results of the SegNet model. (d) Saliency Map results of the ResNet-50 model.

Figure 9. Model—ResNet18, layer 7, total channels—64, layer type—Max Pooling. (a) Output of channel 0. (b) Output of channel 5. (c) Output of channel 33. (d) Output of channel 63.

OD-XAI - Results

	ResNet-18	ResNet-50	SegNet
Train accuracy	0.9761	0.9281	0.9655
Test accuracy	0.9786	0.9318	0.9630

Critique

- "Irrelevant" content
- Detailed description of approach and setup
- Different XAI integrations

XAI-ADS: An Explainable Aritifical Intelligence Framework for Enhancing Anomaly Detection in Autonomous Driving Systems

- IEEE
- April 2024
- 8 citations

XAI-ADS: An Explainable Aritifical Intelligence Framework for Enhancing Anomaly Detection in Autonomous Driving Systems - Content

- End-to-end XAI framework for anomaly detection
- Introduction of two novel feature selection methods

Framework

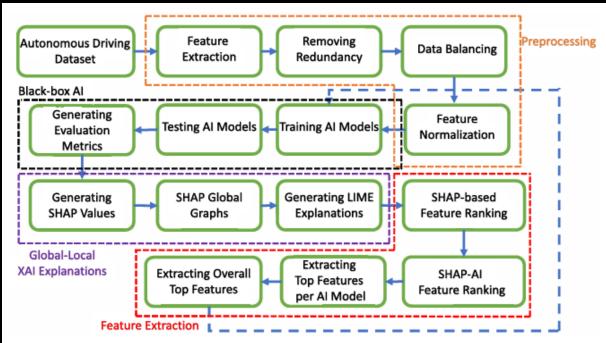


FIGURE 1. An overview of different components in our XAI framework for AV status classification.

- feature extraction to understand attacks
- Remove invaluable data
- No feature dominates model analysis
- AI: 70% training, 30% evaluation
- XAI: SHAP, LIME

Novel Feature Selection Methods

- Select features
- Generate SHAP values
- SHAP-based: values as performance contribution
- SHAP-AI: F_i as sum of product of SHAP values
- Rank features
- Extract top k ranked features

Novel Feature Selection Methods

											_		
	Evaluation	DT		RF		DNI		KNI		SVN		AdaBo	
		SHAP-based	SHAP-AI										
k=1	Accuracy	0.75	0.76	0.78	0.78	0.53	0.34	0.77	0.77	0.53	0.53	0.79	0.79
	Precision	0.77	0.77	0.80	0.79	0.67	0.68	0.82	0.82	0.53	0.53	0.83	0.82
	Recall	0.91	0.91	0.89	0.90	0.59	0.03	0.85	0.84	0.54	0.51	0.86	0.87
	F-1 score	0.83	0.83	0.84	0.84	0.63	0.06	0.83	0.83	0.54	0.52	0.85	0.84
k=2	Accuracy	0.77	0.78	0.79	0.80	0.42	0.57	0.77	0.77	0.55	0.54	0.79	0.79
	Precision	0.79	0.81	0.83	0.83	0.65	0.67	0.82	0.82	0.54	0.53	0.82	0.83
	Recall	0.89	0.88	0.87	0.88	0.28	0.72	0.85	0.85	0.67	0.61	0.87	0.87
	F-1 score	0.84	0.84	0.85	0.86	0.39	0.69	0.83	0.84	0.59	0.57	0.85	0.85
k=3	Accuracy	0.76	0.78	0.80	0.80	0.46	0.63	0.77	0.77	0.55	0.55	0.79	0.79
	Precision	0.78	0.82	0.83	0.83	0.67	0.66	0.82	0.82	0.55	0.54	0.83	0.83
	Recall	0.90	0.87	0.89	0.88	0.37	0.91	0.85	0.84	0.61	0.66	0.86	0.86
	F-1 score	0.83	0.84	0.86	0.86	0.47	0.77	0.83	0.83	0.58	0.61	0.85	0.85
k=4	Accuracy	0.76	0.79	0.80	0.80	0.66	0.41	0.78	0.78	0.55	0.55	0.79	0.80
	Precision	0.78	0.82	0.83	0.83	0.67	0.67	0.82	0.82	0.54	0.54	0.83	0.84
	Recall	0.90	0.87	0.88	0.88	0.98	0.24	0.85	0.85	0.69	0.69	0.86	0.86
	F-1 score	0.83	0.84	0.85	0.85	0.79	0.36	0.84	0.84	0.61	0.61	0.85	0.85
k=5	Accuracy	0.79	0.79	0.80	0.80	0.66	0.34	0.78	0.77	0.55	0.55	0.79	0.79
	Precision	0.82	0.82	0.83	0.83	0.67	0.64	0.82	0.82	0.54	0.54	0.84	0.83
	Recall	0.87	0.87	0.88	0.88	0.96	0.01	0.85	0.85	0.66	0.66	0.85	0.86
	F-1 score	0.84	0.84	0.86	0.85	0.79	0.03	0.84	0.83	0.60	0.60	0.85	0.85
k=6	Accuracy	0.79	0.79	0.80	0.80	0.66	0.66	0.79	0.79	0.66	0.66	0.80	0.80
	Precision	0.82	0.82	0.73	0.73	0.67	0.67	0.82	0.82	0.69	0.69	0.84	0.84
	Recall	0.87	0.87	0.64	0.64	0.99	0.99	0.85	0.85	0.92	0.92	0.85	0.85
	F-1 score	0.84	0.84	0.68	0.68	0.80	0.80	0.84	0.84	0.85	0.85	0.85	0.84

Critique

- Testing features
- Lots of graphics

Paper for long presentation

OD-XAI: Explainable AI-Based Semantic Object Detection for Autonomous Vehicles

Harsh Mankodiya ¹, Dhairya Jadav ¹, Rajesh Gupta ¹, Sudeep Tanwar ^{1,*}, Wei-Chiang Hong ^{2,*} and Ravi Sharma ³

Sources

- AV https://innovationatwork.ieee.org/autonomous-vehicles-for-today-and-for-the-future/
- Molly Problem https://www.itu.int/en/ITU-T/focusgroups/ai4ad/Pages/MollyProblem.aspx
- Molly Problem picture https://www.nbcnews.com/tech/tech-news/self-driving-uber-car-hit-killed-woman-did-not-recognize-n1079281
- Explanations in Autonomous Driving: A Survey https://ieeexplore.ieee.org/abstract/document/9616449
- OD-XAI https://www.mdpi.com/2076-3417/12/11/5310
- XAI-ADS https://ieeexplore.ieee.org/abstract/document/10486915