
OpenDS Tutorial

Rafael Math 11/11/2019

R. Math

OpenDS Tutorial

Overview

 Requirements

 Download and Getting Started

 Assets and Task Description Files

 Converting Existing Models

 Extending the Scenery (Sky, Road Signs, Weather, Traffic)

 Interaction

R. Math

Requirements

Operating system Windows, Linux, Mac OS

Memory (JVM heap size)
> 40 MB

+ memory for assets

CPU > 1 GHz

Graphic card

AMD/ATI Radeon 9500, NVIDIA GeForce 5 FX,

Intel GMA 4500, or better supporting OpenGL 2.0

or better

Java Runtime Environment JRE 8 or higher

No programming skills required

R. Math

Download and Getting Started

 Download the latest version:

https://cloud.dfki.de/owncloud/index.php/s/8yr6KozAF3ceBBY

 Unzip OpenDS to any folder where you have write access

 Run OpenDS.jar (e.g. “java -jar OpenDS.jar”)

 Select the following settings and click “Continue”:

– Fullscreen: NO

– Vsync: NO

– Gamma correction: NO

– Screen resolution: 800 x 600 (or larger)

– Color Depth: 24 bpp

– Refresh Rate: n/a

– Anti-Aliasing: Disabled

 Select Driving Task: assets/DrivingTasks/Projects/Tutorial/tutorial.xml and click

“Start”

https://cloud.dfki.de/owncloud/index.php/s/8yr6KozAF3ceBBY

R. Math

Basic Key Assignment

You can use the following keys for driving the car:

– accelerate

– accelerate backwards

– steer left

– steer right

– brake

– change camera view

– detailed key mapping

– shut down

R. Math

Assets Folder

 The assets folder is the central repository for

– driving environments (Scenes),

– scene objects (Models),

– audio files (Sounds)

– image files (Textures)

– GUI definitions (Interface)

– templates for performance reports (JasperReports)

 Resources stored in the central assets folder can be

accessed by multiple driving setups

 Task description files (DrivingTasks) are used to

describe a driving setup.

R. Math

Task Description Files

 The DrivingTasks folder consists of the two subfolders

Projects and Schema:

– Projects contains some sample projects which

typically consist of the following XML files:

 openDRIVE.xodr

 scene.xml

 scenario.xml

 interaction.xml

 settings.xml

 (task.xml)

– Schema contains the XML schema files for those XML

files

R. Math

Task Description Files

openDRIVE

.xodr

• Road

network:

• Geometry

• Lanes

• Junctions

scene

.xml

• Road objects:

• Shape

• Translation

• Rotation

• Scale

• Mass

• Environment:

• Sun

• Sky

scenario

.xml

• Environment:

• Weather

• Driver

• Traffic

• Traffic

Lights

interaction

.xml

• Triggers:

• Conditions

• Actions

settings

.xml

• Camera

settings

• CAN settings

• Mirror

settings

• Key mapping

R. Math

Task 1a: Creating a Road Model

Sample Tool: Esri CityEngine

 Commercial tool (free 30-day trial)

 Easy road and building creation

 Export to OBJ format

R. Math

Task 1b: Converting the Road Model

 Convert OBJ to OgreXML format with Obj2OgreConverter

– Python script using Blender 2.49b and the following plugins:

 Wavefront OBJ Importer (built-in)

 dotScene Exporter: http://www.ogre3d.org/tikiwiki/Blender+dotScene+Exporter

 Meshes Exporter: http://www.ogre3d.org/tikiwiki/Blender+Exporter

– The following files will be created:

 Advantages of OgreXML format:

– OgreXML is the native model format of OpenDS

– OgreXML allows to apply filters

Multiplicity File Extension Description

1..* *.mesh.xml Contains the mesh (polygons) of a scene object

1 *.scene List of all objects that will be included in the scene

1 *.material Assignment of materials (e.g. textures) to scene objects

0..* *.jpg, *.gif, *.png Optional textures

http://www.ogre3d.org/tikiwiki/Blender+dotScene+Exporter
http://www.ogre3d.org/tikiwiki/Blender+Exporter

R. Math

Task 2: Adding the Model to the Scene

 You will find the exported city model in your assets folder at:

assets/Scenes/Tutorial/

 To include the model to the scene add the following code to the <models> element of

the project’s scene.xml (assets/DrivingTasks/Projects/Tutorial/scene.xml):

<model id="City" key="Scenes/Tutorial/city.scene">

<mass>0</mass>

<visible>true</visible>

<collisionShape>meshShape</collisionShape>

<scale>

<vector jtype="java_lang_Float" size="3">

<entry>0.4</entry>

<entry>0.4</entry>

<entry>0.4</entry>

</vector>

</scale>

<rotation quaternion="false">

<vector jtype="java_lang_Float" size="3">

<entry>0</entry>

<entry>90</entry>

<entry>0</entry>

</vector>

</rotation>

<translation>

<vector jtype="java_lang_Float" size="3">

<entry>0</entry>

<entry>0</entry>

<entry>0</entry>

</vector>

</translation>

</model>

Scale model to 40 % of original size

Rotate model 90° around up axis

Set model to position (0,0,0)

XML snippet available in

the tutorial package:

tutorial_02.xml

R. Math

Task 3: Optimize Start Properties

The startProperties.properties file can be used to:

 Skip the resolution setup screen (showsettingsscreen=true)

 Set the default resolution (width, height)

 Set the default driving task (e.g.

drivingtask=assets/DrivingTasks/Projects/track1/track1.xml)

The default driving task can furthermore be provided as command line arguments, e.g:

java –jar OpenDS.jar assets/DrivingTasks/Projects/track4/track4.xml

R. Math

Task 4: Setting the Sky Texture

 The sky is a large textured box that cannot be reached by the driving car

 The path to a given texture can be set individually in each project‘s scene.xml file, e.g.

assets/DrivingTasks/Projects/Tutorial/scene.xml

 Change the path of the <skyTexture> element to “Textures/Sky/Bright/mountain.dds“:

Textures/Sky/Bright/mountain.ddsTextures/Sky/Bright/BrightSky.dds

R. Math

Adding Road Objects

Recommended tool: ObjectLocator

 A list of road objects must be provided (e.g. trafficObjects.txt)

 Objects from the list can be selected and placed while driving

 Objects will not be added permanently to the scene

→ XML representation will be stored in the latest subfolder of analyzerData

→ User may decide which road objects to add permanently

For example a speed limit sign can

be “dropped” at any position

R. Math

TrafficLight_; Models/TrafficLight/trafficlight.scene; 1,-1,-5; 0,0,0; 0.7,0.7,0.7;

Task 5a: Adding a Road Sign

1. Add road sign to the inventory list of the ObjectLocator (trafficObjects.txt):

2. Start OpenDS with the ObjectLocator enabled and a pointer to trafficObjects.txt

(settings.xml):

axis value < 0 value > 0

x left right

y down up

z forth back

translation rotation scale

x

y

z

<objectLocator>
<enable>true</enable>
<fileName>trafficObjects.txt</fileName>

</objectLocator>

R. Math

Task 5a: Adding a Road Sign

3. Drive to the position where to place a road sign

4. Press F12 until the desired road sign is shown

5. Adjust the rotation of the road sign

– F7 / F8 fast rotation clockwise / counter-clockwise

– F9 / F10 slow rotation clockwise / counter-clockwise

6. Press F11 to “drop” the road sign at its designated position

7. Repeat procedure for further road signs

F11

F7

F9
F8

F10

F12

R. Math

Task 5a: Adding a Road Sign

 The output of the ObjectLocator might look like the following XML example

 To include e.g. the speed limit sign to the scene add the following code to the

<models> element of the scene.xml (assets/DrivingTasks/Projects/Tutorial/scene.xml):

<model id="speedLimit50_1" key="Models/RoadSigns/

speedLimits/speedLimit50/speedLimit50.scene" ref="">

<mass>0</mass>

<visible>true</visible>

<collisionShape>meshShape</collisionShape>

<scale>

<vector jtype="java_lang_Float" size="3">

<entry>1.0</entry>

<entry>1.0</entry>

<entry>1.0</entry>

</vector>

</scale>

<rotation quaternion="false">

<vector jtype="java_lang_Float" size="3">

<entry>0</entry>

<entry>3.37</entry>

<entry>0</entry>

</vector>

</rotation>

<translation>

<vector jtype="java_lang_Float" size="3">

<entry>-67.57</entry>

<entry>-0.27</entry>

<entry>19.67</entry>

</vector>

</translation>

</model>

100 % of original size

Rotate model 3.37° around up axis

Set model to position (-67.57 , -0.27 , 19.67)

XML snippet:

tutorial_05a.xml

R. Math

Task 5b: Adding more Road Signs

 Add the model definition of to the <models> element of the

scene.xml in the same way

 When running OpenDS, the result should look like:

tutorial_05b.xml

R. Math

Weather Conditions

 Simple weather conditions can be set in the <weather> element of the project’s

scenario.xml (assets/DrivingTasks/Projects/Tutorial/scenario.xml):

<environment>

<weather>

<snowingPercentage>100</snowingPercentage>

<rainingPercentage>0</rainingPercentage>

<fogPercentage>50</fogPercentage>

</weather>

</environment>

 Simulation of snow and rain by particle emitter

 Particle emitter is attached to the driving car

 resource consuming set to “-1” if not used

 Simulation of fog is a global effect

R. Math

 Setting up a computer-controlled traffic requires:

– a vehicle (or pedestrian) model with parameters like mass, acceleration,

deceleration,

– a list of waypoints,

– a list of segments.

 Add the following XML code to the project’s

scenario.xml (assets/DrivingTasks/Projects/

Tutorial/scenario.xml):

Example car to <traffic> element

<vehicle id="car1">

<modelPath>Models/Cars/drivingCars/bmw1/Car.j3o</modelPath>

<mass>800</mass>

<acceleration>3.3</acceleration>

<decelerationBrake>8.7</decelerationBrake>

<decelerationFreeWheel>2.0</decelerationFreeWheel>

<engineOn>true</engineOn>

<minDistanceFromPath>2.5</minDistanceFromPath>

<maxDistanceFromPath>3.5</maxDistanceFromPath>

<startWayPoint>WayPoint_74</startWayPoint>

</vehicle>

Task 6a: Traffic

XML snippet:

tutorial_06a.xml

<wayPoints debug="true">

<wayPoint id="WayPoint_74">

<translation>

<vector jtype="java_lang_Float" size="3">

<entry>-74.81913</entry>

<entry>0.1243466</entry>

<entry>-54.813656</entry>

</vector>

</translation>

</wayPoint>

</wayPoints>

Example waypoint list to <road> element

<segments debug="true">

<segment id="segment74_32">

<from>WayPoint_74</from>

<to>WayPoint_32</to>

<speed>50</speed>

<jump>false</jump>

<probability>1.0</probability>

</segment>

</segments>

Example segment list to <road> element

R. Math

Task 6b: Adding more Traffic

 Add the traffic definition of to the <traffic> and <road> element of

the scenario.xml in the same way

 When running OpenDS, the result should look like:

tutorial_06b.xml

R. Math

Task 7a: Simple Geometries

 The following geometries can be defined by parameters in the scene.xml without

model files:

– box: height, width, depth

– sphere: radius, number of axial and radial samples

– cylinder: height, radius, number of axial and radial samples

 Place three identical boxes in the scene:

1. Add the following geometry definition to the <geometries> element of the

scene.xml

<box id="box">

<width>1</width>

<depth>1</depth>

<height>0.1</height>

</box>

2. Add three model definitions to the <models> element of the scene.xml referencing

(“ref”) the geometry “box”

tutorial_07a.xml

R. Math

Task 7b: Simple Geometries

2. Add three model definitions to the <models> element of the scene.xml referencing

(“ref”) the geometry “box”

<model id="redBox" key="" ref="box">

[…]

</model>

<model id="blueBox" key="" ref="box">

[…]

</model>

<model id="greenBox" key="" ref="box">

[…]

</models>

3. As the boxes have no material information (e.g. texture, …), set the color manually:

<material>

<color>

<vector jtype="java_lang_Float" size="4">

<entry>1</entry>

<entry>0</entry>

<entry>0</entry>

<entry>1</entry>

</vector>

</color>

</material>

For complete code see:

tutorial_07b.xml

RGBA color value: (1,0,0,1) red

R. Math

Simple Geometries

R. Math

 Events – defined in the project’s interaction.xml – can be triggered:

– on collision with a specified scene object,

– on key, button, or pedal press

 An event trigger consists of:

– a condition and

– a list of activities which will be executed when the condition is met

<triggers>

<trigger id="collisionWithRedBox“>

<activities>

<activity id="moveCar1">

<action id="moveTraffic" delay="0" repeat="0">

<parameter name="trafficObjectID" value="car1" />

<parameter name="wayPointID" value="WayPoint_74" />

</action>

</activity>

</activities>

<condition>

<collideWith>

<modelID>redBox</modelID>

</collideWith>

</condition>

</trigger>

</triggers>

Interaction

activity list

condition

This example will move the computer-controlled vehicle “car1” to

“Waypoint_6” when the driver’s car collides with the model “redBox”

R. Math

 Events – defined in the project’s interaction.xml – can be triggered:

– on collision with a specified scene object,

– on key, button, or pedal press

 An event trigger consists of:

– a condition and

– a list of activities which will be executed when the condition is met

<triggers>

<trigger id="collisionWithRedBox“>

<activities>

<activity id="moveCar1">

<action id="moveTraffic" delay="0" repeat="0">

<parameter name="trafficObjectID" value="car1" />

<parameter name="wayPointID" value="WayPoint_74" />

</action>

</activity>

</activities>

<condition>

<collideWith>

<modelID>redBox</modelID>

</collideWith>

</condition>

</trigger>

</triggers>

Interaction

activity list

condition

This example will move the computer-controlled vehicle “car1” to

“Waypoint_6” when the driver’s car collides with the model “redBox”

Some implemented events:

– manipulateObject

– manipulatePicture

– pauseSimulation

– startRecording

– stopRecording

– resetCar

– moveTraffic

– startPresentationTask

– setCurrentSpeedLimit

– measureTimeUntilBrake

– measureTimeUntilSpeedChange

– playSound

– sendMessage

– requestGreenTrafficLight

– startReactionMeasurement

– openInstructionsScreen

– …

R. Math

Task 8a: Collision Interaction

 Set up a collision interaction for the three boxes as follows:

1. Define three activities

2. Define three triggers, one for each box

3. For each trigger, add a collision condition and assign one of the activities

 Add the following XML code to the <activities> element the project’s interaction.xml

(assets/DrivingTasks/Projects/Tutorial/interaction.xml)

<activity id="movePedestrianCrossing_1">

<action id="manipulateObject" delay="0" repeat="0">

[parameter list …]

</action>

</activity>

<activity id="movePedestrianCrossing_1Back">

<action id="manipulateObject" delay="0" repeat="0">

[parameter list …]

</action>

</activity>

<activity id="moveCar1">

<action id="moveTraffic" delay="0" repeat="0">

[parameter list …]

</action>

</activity> For complete code see:

tutorial_08a.xml

manipulating a scene object

manipulating a scene object

moving traffic

R. Math

Task 8b: Collision Interaction

 Add the following XML code to the <triggers> element the project’s interaction.xml

(assets/DrivingTasks/Projects/Tutorial/interaction.xml)

<trigger id="collisionWithRedBox">

<activities>

<activity ref="moveCar1"/>

</activities>

<condition>

<collideWith>

<modelID>redBox</modelID>

</collideWith>

</condition>

</trigger>

<trigger id="collisionWithBlueBox">

<activities>

<activity ref="movePedestrianCrossing_1"/>

</activities>

<condition>

<collideWith>

<modelID>blueBox</modelID>

</collideWith>

</condition>

</trigger>

For complete code see:

tutorial_08b.xml

on collision with “redBox”, activity

“moveCar1” will be executed

on collision with “blueBox”, activity

“movePedestrianCrossing_1” will be

executed

Note: local definition and reference to global

definition allowed!

R. Math

End of Tutorial

Questions?

Thank You For Your Attention

