
OpenDS Tutorial

Rafael Math 11/11/2019

R. Math

OpenDS Tutorial

Overview

 Requirements

 Download and Getting Started

 Assets and Task Description Files

 Converting Existing Models

 Extending the Scenery (Sky, Road Signs, Weather, Traffic)

 Interaction

R. Math

Requirements

Operating system Windows, Linux, Mac OS

Memory (JVM heap size)
> 40 MB

+ memory for assets

CPU > 1 GHz

Graphic card

AMD/ATI Radeon 9500, NVIDIA GeForce 5 FX,

Intel GMA 4500, or better supporting OpenGL 2.0

or better

Java Runtime Environment JRE 8 or higher

No programming skills required

R. Math

Download and Getting Started

 Download the latest version:

https://cloud.dfki.de/owncloud/index.php/s/8yr6KozAF3ceBBY

 Unzip OpenDS to any folder where you have write access

 Run OpenDS.jar (e.g. “java -jar OpenDS.jar”)

 Select the following settings and click “Continue”:

– Fullscreen: NO

– Vsync: NO

– Gamma correction: NO

– Screen resolution: 800 x 600 (or larger)

– Color Depth: 24 bpp

– Refresh Rate: n/a

– Anti-Aliasing: Disabled

 Select Driving Task: assets/DrivingTasks/Projects/Tutorial/tutorial.xml and click

“Start”

https://cloud.dfki.de/owncloud/index.php/s/8yr6KozAF3ceBBY

R. Math

Basic Key Assignment

You can use the following keys for driving the car:

– accelerate

– accelerate backwards

– steer left

– steer right

– brake

– change camera view

– detailed key mapping

– shut down

R. Math

Assets Folder

 The assets folder is the central repository for

– driving environments (Scenes),

– scene objects (Models),

– audio files (Sounds)

– image files (Textures)

– GUI definitions (Interface)

– templates for performance reports (JasperReports)

 Resources stored in the central assets folder can be

accessed by multiple driving setups

 Task description files (DrivingTasks) are used to

describe a driving setup.

R. Math

Task Description Files

 The DrivingTasks folder consists of the two subfolders

Projects and Schema:

– Projects contains some sample projects which

typically consist of the following XML files:

 openDRIVE.xodr

 scene.xml

 scenario.xml

 interaction.xml

 settings.xml

 (task.xml)

– Schema contains the XML schema files for those XML

files

R. Math

Task Description Files

openDRIVE

.xodr

• Road

network:

• Geometry

• Lanes

• Junctions

scene

.xml

• Road objects:

• Shape

• Translation

• Rotation

• Scale

• Mass

• Environment:

• Sun

• Sky

scenario

.xml

• Environment:

• Weather

• Driver

• Traffic

• Traffic

Lights

interaction

.xml

• Triggers:

• Conditions

• Actions

settings

.xml

• Camera

settings

• CAN settings

• Mirror

settings

• Key mapping

R. Math

Task 1a: Creating a Road Model

Sample Tool: Esri CityEngine

 Commercial tool (free 30-day trial)

 Easy road and building creation

 Export to OBJ format

R. Math

Task 1b: Converting the Road Model

 Convert OBJ to OgreXML format with Obj2OgreConverter

– Python script using Blender 2.49b and the following plugins:

 Wavefront OBJ Importer (built-in)

 dotScene Exporter: http://www.ogre3d.org/tikiwiki/Blender+dotScene+Exporter

 Meshes Exporter: http://www.ogre3d.org/tikiwiki/Blender+Exporter

– The following files will be created:

 Advantages of OgreXML format:

– OgreXML is the native model format of OpenDS

– OgreXML allows to apply filters

Multiplicity File Extension Description

1..* *.mesh.xml Contains the mesh (polygons) of a scene object

1 *.scene List of all objects that will be included in the scene

1 *.material Assignment of materials (e.g. textures) to scene objects

0..* *.jpg, *.gif, *.png Optional textures

http://www.ogre3d.org/tikiwiki/Blender+dotScene+Exporter
http://www.ogre3d.org/tikiwiki/Blender+Exporter

R. Math

Task 2: Adding the Model to the Scene

 You will find the exported city model in your assets folder at:

assets/Scenes/Tutorial/

 To include the model to the scene add the following code to the <models> element of

the project’s scene.xml (assets/DrivingTasks/Projects/Tutorial/scene.xml):

<model id="City" key="Scenes/Tutorial/city.scene">

<mass>0</mass>

<visible>true</visible>

<collisionShape>meshShape</collisionShape>

<scale>

<vector jtype="java_lang_Float" size="3">

<entry>0.4</entry>

<entry>0.4</entry>

<entry>0.4</entry>

</vector>

</scale>

<rotation quaternion="false">

<vector jtype="java_lang_Float" size="3">

<entry>0</entry>

<entry>90</entry>

<entry>0</entry>

</vector>

</rotation>

<translation>

<vector jtype="java_lang_Float" size="3">

<entry>0</entry>

<entry>0</entry>

<entry>0</entry>

</vector>

</translation>

</model>

Scale model to 40 % of original size

Rotate model 90° around up axis

Set model to position (0,0,0)

XML snippet available in

the tutorial package:

tutorial_02.xml

R. Math

Task 3: Optimize Start Properties

The startProperties.properties file can be used to:

 Skip the resolution setup screen (showsettingsscreen=true)

 Set the default resolution (width, height)

 Set the default driving task (e.g.

drivingtask=assets/DrivingTasks/Projects/track1/track1.xml)

The default driving task can furthermore be provided as command line arguments, e.g:

java –jar OpenDS.jar assets/DrivingTasks/Projects/track4/track4.xml

R. Math

Task 4: Setting the Sky Texture

 The sky is a large textured box that cannot be reached by the driving car

 The path to a given texture can be set individually in each project‘s scene.xml file, e.g.

assets/DrivingTasks/Projects/Tutorial/scene.xml

 Change the path of the <skyTexture> element to “Textures/Sky/Bright/mountain.dds“:

Textures/Sky/Bright/mountain.ddsTextures/Sky/Bright/BrightSky.dds

R. Math

Adding Road Objects

Recommended tool: ObjectLocator

 A list of road objects must be provided (e.g. trafficObjects.txt)

 Objects from the list can be selected and placed while driving

 Objects will not be added permanently to the scene

→ XML representation will be stored in the latest subfolder of analyzerData

→ User may decide which road objects to add permanently

For example a speed limit sign can

be “dropped” at any position

R. Math

TrafficLight_; Models/TrafficLight/trafficlight.scene; 1,-1,-5; 0,0,0; 0.7,0.7,0.7;

Task 5a: Adding a Road Sign

1. Add road sign to the inventory list of the ObjectLocator (trafficObjects.txt):

2. Start OpenDS with the ObjectLocator enabled and a pointer to trafficObjects.txt

(settings.xml):

axis value < 0 value > 0

x left right

y down up

z forth back

translation rotation scale

x

y

z

<objectLocator>
<enable>true</enable>
<fileName>trafficObjects.txt</fileName>

</objectLocator>

R. Math

Task 5a: Adding a Road Sign

3. Drive to the position where to place a road sign

4. Press F12 until the desired road sign is shown

5. Adjust the rotation of the road sign

– F7 / F8 fast rotation clockwise / counter-clockwise

– F9 / F10 slow rotation clockwise / counter-clockwise

6. Press F11 to “drop” the road sign at its designated position

7. Repeat procedure for further road signs

F11

F7

F9
F8

F10

F12

R. Math

Task 5a: Adding a Road Sign

 The output of the ObjectLocator might look like the following XML example

 To include e.g. the speed limit sign to the scene add the following code to the

<models> element of the scene.xml (assets/DrivingTasks/Projects/Tutorial/scene.xml):

<model id="speedLimit50_1" key="Models/RoadSigns/

speedLimits/speedLimit50/speedLimit50.scene" ref="">

<mass>0</mass>

<visible>true</visible>

<collisionShape>meshShape</collisionShape>

<scale>

<vector jtype="java_lang_Float" size="3">

<entry>1.0</entry>

<entry>1.0</entry>

<entry>1.0</entry>

</vector>

</scale>

<rotation quaternion="false">

<vector jtype="java_lang_Float" size="3">

<entry>0</entry>

<entry>3.37</entry>

<entry>0</entry>

</vector>

</rotation>

<translation>

<vector jtype="java_lang_Float" size="3">

<entry>-67.57</entry>

<entry>-0.27</entry>

<entry>19.67</entry>

</vector>

</translation>

</model>

100 % of original size

Rotate model 3.37° around up axis

Set model to position (-67.57 , -0.27 , 19.67)

XML snippet:

tutorial_05a.xml

R. Math

Task 5b: Adding more Road Signs

 Add the model definition of to the <models> element of the

scene.xml in the same way

 When running OpenDS, the result should look like:

tutorial_05b.xml

R. Math

Weather Conditions

 Simple weather conditions can be set in the <weather> element of the project’s

scenario.xml (assets/DrivingTasks/Projects/Tutorial/scenario.xml):

<environment>

<weather>

<snowingPercentage>100</snowingPercentage>

<rainingPercentage>0</rainingPercentage>

<fogPercentage>50</fogPercentage>

</weather>

</environment>

 Simulation of snow and rain by particle emitter

 Particle emitter is attached to the driving car

 resource consuming  set to “-1” if not used

 Simulation of fog is a global effect

R. Math

 Setting up a computer-controlled traffic requires:

– a vehicle (or pedestrian) model with parameters like mass, acceleration,

deceleration,

– a list of waypoints,

– a list of segments.

 Add the following XML code to the project’s

scenario.xml (assets/DrivingTasks/Projects/

Tutorial/scenario.xml):

Example car to <traffic> element

<vehicle id="car1">

<modelPath>Models/Cars/drivingCars/bmw1/Car.j3o</modelPath>

<mass>800</mass>

<acceleration>3.3</acceleration>

<decelerationBrake>8.7</decelerationBrake>

<decelerationFreeWheel>2.0</decelerationFreeWheel>

<engineOn>true</engineOn>

<minDistanceFromPath>2.5</minDistanceFromPath>

<maxDistanceFromPath>3.5</maxDistanceFromPath>

<startWayPoint>WayPoint_74</startWayPoint>

</vehicle>

Task 6a: Traffic

XML snippet:

tutorial_06a.xml

<wayPoints debug="true">

<wayPoint id="WayPoint_74">

<translation>

<vector jtype="java_lang_Float" size="3">

<entry>-74.81913</entry>

<entry>0.1243466</entry>

<entry>-54.813656</entry>

</vector>

</translation>

</wayPoint>

</wayPoints>

Example waypoint list to <road> element

<segments debug="true">

<segment id="segment74_32">

<from>WayPoint_74</from>

<to>WayPoint_32</to>

<speed>50</speed>

<jump>false</jump>

<probability>1.0</probability>

</segment>

</segments>

Example segment list to <road> element

R. Math

Task 6b: Adding more Traffic

 Add the traffic definition of to the <traffic> and <road> element of

the scenario.xml in the same way

 When running OpenDS, the result should look like:

tutorial_06b.xml

R. Math

Task 7a: Simple Geometries

 The following geometries can be defined by parameters in the scene.xml without

model files:

– box: height, width, depth

– sphere: radius, number of axial and radial samples

– cylinder: height, radius, number of axial and radial samples

 Place three identical boxes in the scene:

1. Add the following geometry definition to the <geometries> element of the

scene.xml

<box id="box">

<width>1</width>

<depth>1</depth>

<height>0.1</height>

</box>

2. Add three model definitions to the <models> element of the scene.xml referencing

(“ref”) the geometry “box”

tutorial_07a.xml

R. Math

Task 7b: Simple Geometries

2. Add three model definitions to the <models> element of the scene.xml referencing

(“ref”) the geometry “box”

<model id="redBox" key="" ref="box">

[…]

</model>

<model id="blueBox" key="" ref="box">

[…]

</model>

<model id="greenBox" key="" ref="box">

[…]

</models>

3. As the boxes have no material information (e.g. texture, …), set the color manually:

<material>

<color>

<vector jtype="java_lang_Float" size="4">

<entry>1</entry>

<entry>0</entry>

<entry>0</entry>

<entry>1</entry>

</vector>

</color>

</material>

For complete code see:

tutorial_07b.xml

RGBA color value: (1,0,0,1)  red

R. Math

Simple Geometries

R. Math

 Events – defined in the project’s interaction.xml – can be triggered:

– on collision with a specified scene object,

– on key, button, or pedal press

 An event trigger consists of:

– a condition and

– a list of activities which will be executed when the condition is met

<triggers>

<trigger id="collisionWithRedBox“>

<activities>

<activity id="moveCar1">

<action id="moveTraffic" delay="0" repeat="0">

<parameter name="trafficObjectID" value="car1" />

<parameter name="wayPointID" value="WayPoint_74" />

</action>

</activity>

</activities>

<condition>

<collideWith>

<modelID>redBox</modelID>

</collideWith>

</condition>

</trigger>

</triggers>

Interaction

activity list

condition

This example will move the computer-controlled vehicle “car1” to

“Waypoint_6” when the driver’s car collides with the model “redBox”

R. Math

 Events – defined in the project’s interaction.xml – can be triggered:

– on collision with a specified scene object,

– on key, button, or pedal press

 An event trigger consists of:

– a condition and

– a list of activities which will be executed when the condition is met

<triggers>

<trigger id="collisionWithRedBox“>

<activities>

<activity id="moveCar1">

<action id="moveTraffic" delay="0" repeat="0">

<parameter name="trafficObjectID" value="car1" />

<parameter name="wayPointID" value="WayPoint_74" />

</action>

</activity>

</activities>

<condition>

<collideWith>

<modelID>redBox</modelID>

</collideWith>

</condition>

</trigger>

</triggers>

Interaction

activity list

condition

This example will move the computer-controlled vehicle “car1” to

“Waypoint_6” when the driver’s car collides with the model “redBox”

Some implemented events:

– manipulateObject

– manipulatePicture

– pauseSimulation

– startRecording

– stopRecording

– resetCar

– moveTraffic

– startPresentationTask

– setCurrentSpeedLimit

– measureTimeUntilBrake

– measureTimeUntilSpeedChange

– playSound

– sendMessage

– requestGreenTrafficLight

– startReactionMeasurement

– openInstructionsScreen

– …

R. Math

Task 8a: Collision Interaction

 Set up a collision interaction for the three boxes as follows:

1. Define three activities

2. Define three triggers, one for each box

3. For each trigger, add a collision condition and assign one of the activities

 Add the following XML code to the <activities> element the project’s interaction.xml

(assets/DrivingTasks/Projects/Tutorial/interaction.xml)

<activity id="movePedestrianCrossing_1">

<action id="manipulateObject" delay="0" repeat="0">

[parameter list …]

</action>

</activity>

<activity id="movePedestrianCrossing_1Back">

<action id="manipulateObject" delay="0" repeat="0">

[parameter list …]

</action>

</activity>

<activity id="moveCar1">

<action id="moveTraffic" delay="0" repeat="0">

[parameter list …]

</action>

</activity> For complete code see:

tutorial_08a.xml

manipulating a scene object

manipulating a scene object

moving traffic

R. Math

Task 8b: Collision Interaction

 Add the following XML code to the <triggers> element the project’s interaction.xml

(assets/DrivingTasks/Projects/Tutorial/interaction.xml)

<trigger id="collisionWithRedBox">

<activities>

<activity ref="moveCar1"/>

</activities>

<condition>

<collideWith>

<modelID>redBox</modelID>

</collideWith>

</condition>

</trigger>

<trigger id="collisionWithBlueBox">

<activities>

<activity ref="movePedestrianCrossing_1"/>

</activities>

<condition>

<collideWith>

<modelID>blueBox</modelID>

</collideWith>

</condition>

</trigger>

For complete code see:

tutorial_08b.xml

on collision with “redBox”, activity

“moveCar1” will be executed

on collision with “blueBox”, activity

“movePedestrianCrossing_1” will be

executed

Note: local definition and reference to global

definition allowed!

R. Math

End of Tutorial

Questions?

Thank You For Your Attention

