
SAARLAND UNIVERSITY

Faculty of Natural Sciences and Technology I
Department of Computer Science

Bachelor’s thesis

AndroidSmart

An Android framework for sensor data
acquisition via Bluetooth

Stephan Just
Bachelor’s Program in Media Informatics
December 2015

Advisor:
Frederic Kerber, German Research Center for Artificial Intelligence,
Saarbrücken, Germany

Supervisor:
Prof. Dr. Antonio Krüger, German Research Center for Artificial Intelligence,
Saarbrücken, Germany

Reviewers:
Prof. Dr. Antonio Krüger, German Research Center for Artificial Intelligence,
Saarbrücken, Germany
Dr.-Ing. Tim Schwartz, German Research Center for Artificial Intelligence,
Saarbrücken, Germany

Submitted
21th December, 2015

Saarland University
Faculty of Natural Sciences and Technology I
Department of Computer Science
Campus - Building E1.1
66123 Saarbrücken
Germany

Statement in Lieu of an Oath:

I hereby confirm that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Saarbrücken, 21th December, 2015

Declaration of Consent:

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, 21th December, 2015

Abstract

With the rise of wearables, such as smart watches and fitness trackers, mobile
developers face the issue of adding support for a basically endless amount
of different devices. While it is already tedious to support a huge amount of
devices for one application, this work is done by nearly every developer of any
application that wants to support said wearables, resulting in a lot of rewritten
code.

This thesis suggests a modular Android framework that supports multiple very
popular devices with the possibility to be extended to support further wear-
ables. Developers using the framework do not have to bother about any software
development kits or application programming interfaces provided by the man-
ufacturers. A public interface allows to interact with each device in the same
way, therefore using the framework results in support for any device currently
supported by the framework.

v

List of Figures

2.1 ODK Sensors framework architecture [3] 6

2.2 Possible ways of the framework to communicate with drivers [3] 7

2.3 Wearable Sensing Framework for Human Activity Recognition [18] 10

3.1 Framework structure . 13

5.1 Framework testing application . 28

Contents

1 Introduction 1

1.1 Wearables . 1

1.2 Mobile Applications for Smartphones 2

1.3 The Problem . 2

1.4 The Goal . 3

2 Related Work 5

2.1 ODK Sensors . 5

2.2 Bluetooth Low Energy . 8

2.3 Wearable Sensing Framework for Human Activity Monitoring . . 9

2.4 Mscape . 10

2.5 Dandelion . 11

3 Framework Structure 13

3.1 General Structure . 13

3.1.1 DeviceDriver . 14

3.1.2 DriverService . 15

3.1.3 DriverCommunicator . 15

3.2 Filters . 16

4 Implemented Drivers 19

4.1 Pebble Watch . 19

4.1.1 Android Driver Implementation 20

4.1.2 Companion App Details . 21

4.1.3 Challenges and Advantages 21

4.2 Microsoft Band . 22

4.2.1 Android Driver Implementation 22

4.2.2 Challenges and Advantages 23

4.3 Android Wear . 23

4.3.1 Android Driver Implementation 24

ix

4.3.2 Companion App Details . 24

4.3.3 Challenges and Advantages 25

5 Testing Application 27

5.1 App Usage . 27

5.2 Implementation . 29

5.3 Testing . 30

6 Conclusions 31

7 Future Work 33

Bibliography 37

Chapter 1
Introduction

This chapter provides an introduction into the wearable market, gives statistics
about mobile applications, explains the problem that arises from the combination
of both topics and proposes a solution to the issue.

1.1 Wearables

Wearables are all kind of electronic devices that can be worn with clothing or
on the body. From a technical point of view every mobile computer, such as
smartphones or tablets, could be called a wearable. The industry however uses
the term ”wearable” for small, light and intelligent devices that integrate effortless
into our everyday life. Most of these devices connect with our smartphones to
display the information they gathered as these small devices very often do not
have a display.

In 1972 the Hamilton Watch Company created the first digital watch called the
Pulsar [16]. Using LEDs (light emitting diodes) to power its display, it consumed
that much energy that constantly having the display turned on would have led to
a very short battery life. Therefore the Pulsar had a button to enable the display
for a short period of time.

Starting with the Pulsar, many companies entered the market of wearable elec-
tronic devices, mainly combining computers and watches such as the Casio
AT-550 in 1984, a calculator watch with a touch screen [4]. In the same year
Seiko introduced the RC-1000 wrist terminal and one year later the RC-20 wrist
computer. Both devices were able to interface with desktop computers, such as
the Apple II, the Commodore 64 or the IBM PC, allowing both devices to interact
with each other.

1

2 Chapter 1. Introduction

While the first wearables were mostly electronic watches with added computa-
tional capabilities, they are nowadays all kinds of different devices such as fitness
trackers, chest straps, footwear and much more. Especially in the last few years
manufacturers created a lot of different wearables equipped with sensors to be
carried by a user to monitor his movement, his behavior and the world around
him. The devices are packed with sensors intended to interact with the user
and provide a unique customized experience. For example, data from GPS mod-
ules are used to localize search results as in tourist attraction recommendation
apps [20]. Accelerometers are used to count steps [19] and provide basic fitness
tracking for users. Although devices with sensors existed for many years, the rise
of smartphones and their possibility to interact with basically everything opened
a huge market for intelligent wearable devices.

The database of Vandrico Inc currently lists 347 different wearables1. In 2014
about 17.6 million of these wearable devices have been sold. The GfK (Gesellschaft
für Konsumforschung2) estimated that in 2015 there will be a total of 51 million
wearables sold [12].

1.2 Mobile Applications for Smartphones

The two biggest app stores for mobile phones, Google Play and the Apple App
Store, contained around 1.8 million applications (apps) in 2013 [1, 7] and 2.6 million
apps in 2014 [13]. This number has grown to 3.1 million apps in July 2015 [2].

The fitness and health care sector has created a lot of new wearables and fitness
apps. Kailas et al. [10] claimed that there were over 7,000 health related mobile
apps in 2010. According to the U.S. Food and Drug Administration this number
has grown to over 31,000 [8] in 2013. In 2014 this number has increased to over
100,000 [17]. Compared to the 37.5% growth of all apps in the app stores from
2013 to 2014, the 222% growth of health care and fitness apps during the same
period is an enormous amount.

1.3 The Problem

Many of these apps, especially fitness or health care apps, require real time user
data that have to be acquired from either a phone or a wearable device. While
certain data such as movement can be tracked by using phone sensors, many
additional information such as heart rate can mostly only be acquired by using
further wearables as in the form of a chest strap or wrist band. An example for
this is HealthGear [14], a real-time wearable system that monitors a person’s
physiological state by using an array of non-invasive Bluetooth sensors.

1http://vandrico.com/wearables, Retrieved August 14, 2015
2Society for Consumer Research

http://vandrico.com/wearables

1.4. The Goal 3

In certain situations it is also not possible or impractical to carry a smartphone,
such as fast paced sports, sports that include physical play, swimming or sleeping
whereas a wrist-worn device can easily be worn in these situations. Lastly certain
kinds of movement are also not trackable by phones in a normal situation, such
as hand or head movements as the phone is normally in a pocket or handbag.

While some wearables have a display and function on their own, most wearables
are useless without a host device running a special software to communicate with
it. However, developers have a hard time supporting all of these wearables and
integrating them in their applications because most wearables are not using the
same operating system and provide different application program interfaces (APIs)
to include in an app as there’s currently no global standard to access wearables.
Even if they are running on the same system many manufacturers have created
software development kits (SDKs) that have to be included in an app to fully utilize
the functions of a wearable device. With the amount of different APIs and SKDs
it becomes a lot of work for developers to add support for all devices and the
number only keeps growing. In addition to that developers have to rewrite the
wearable communication code that is used by basically any app supporting these
devices, wasting a lot of time for general purpose code.

1.4 The Goal

The goal of this thesis is to create a fully modular Android framework, called An-
droidSmart, that eases the process of creating new device drivers to communicate
with wearables, but also the process of integrating said drivers into a mobile ap-
plication. The finished framework will be shipped with a few drivers for certain
devices and it can be extended nearly endlessly by adding new drivers for further
devices. These new drivers should integrate effortless in the existing framework
and are accessed as all previous ones, as the public interface is shielded from
internal driver code so that differences between individual devices are irrelevant
for a developer using the framework.

An application developer using the framework only specifies which device to
connect to and which driver to use, as automatically detecting the type of the
connected wearable is currently not supported by Android. Once the connection
is established the developer can order the framework to register with the sensors
available for that device. The connection status, data received and occurring
errors are transmitted to the developer by the framework.

Any device supported by the framework should be accessed in the same way.
Swapping devices on the fly should not stop the app from working. Furthermore
a developer only has to implement what he wants to do with the data and not
how he accesses them or in what format they are because the data output is
standardized across all devices. The modular approach allows to add support for
a basically unlimited amount of devices.

4 Chapter 1. Introduction

This thesis provides a general overview about the framework, example drivers
for certain devices and a testing app as a proof of concept as well as an example
to demonstrate what a developer has to do while using the framework.

Chapter 2
Related Work

This chapter introduces related papers and attempts that try to ease the work
with external sensors. This includes theoretical works such as frameworks and
toolkits, but also a technical realization with Bluetooth Low Energy.

2.1 ODK Sensors

Brunette et al. [3] analyzed the problems that occur while integrating external
sensors in an application. Since users do not have administrative rights on
their smartphones to include kernel level device drivers they explored ways to
package software in a way that end-users can access external sensors on their
locked devices. A hard-coded solution for a single device was not acceptable
because the framework should support as many different sensors as possible.
Their solution was a user level framework for Android to communicate with
external sensors that has the following properties:

• Modularity, by lowering the workload to add new sensors to a minimum
by abstracting communication, buffers and more, meaning a developer
creating a new driver only has to implement low level driver code.

• Isolate application and sensor specific code from each other to avoid prob-
lems in the application when a sensor fails.

• Dealing with the trade-off of architectural approaches such as performance
and modularity.

• Allow to add new sensors to an application by downloading the driver for
the sensor from an application market in contrast to changing OS settings.

5

6 Chapter 2. Related Work

Figure 2.1: ODK Sensors framework architecture [3]

As seen in Figure 2.1 the framework consists of several layers that communicate
with each other. All calls to the framework are forwarded by a Sensor Manager
towards the corresponding Sensor Driver whereas each driver performs low level
tasks. Each driver has access to different Channel Managers that abstract access
to Wi-Fi, Bluetooth, USB and NFC. The chosen manager forwards the low level
commands of each driver to the corresponding hardware device, receives the
answers and passes them back to the driver.

New drivers therefore only have to implement the low level commands and send
them to a channel manager, as sending data, threading or buffering is handled by
the framework.

Drivers can be added to the framework in three different ways as shown in
Figure 2.2. By default the framework has drivers integrated in itself. Adding the

2.1. ODK Sensors 7

Figure 2.2: Possible ways of the framework to communicate with drivers [3]

framework to an app therefore adds the drivers for these external sensors to the
app. If a user needs access to devices whose drivers are not part of the default
framework, one can install additional external apps that provide these drivers.
These apps have two different methods of communicating with the framework:
RPC and system broadcasts.

At the time of writing there have been several real world projects that use ODK
sensors. For example milk banks in South America are using ODK Sensors
to monitor the pasteurization process of breast milk from donor mothers to
deactivate pathogens [5]. The application uses ODK Sensors to read sensor
values from the thermometer as well as to communicate with a printer to print
the results of the process.

While ODK sensors ships an additional application to provide the background
service, AndroidSmart will not do so but will work out of the box. While ODK
Sensors focuses on low level drivers (mostly sending byte code) for devices such
as external sensors with a Bluetooth module, AndroidSmart is going to focus on
more intelligent devices such as smartwatches that do not accept byte strings as
an input but rather use a manufacturer-provided SDK as ODK Sensors’ design
makes it hard to incorporate external SDKs into their framework.

8 Chapter 2. Related Work

2.2 Bluetooth Low Energy

Bluetooth Low Energy (BLE, also called Bluetooth Smart or Bluetooth 4.0) [9] is
a standard developed by the Bluetooth Special Interest Group as an improved
successor to Bluetooth 3.0 [15]. Although Bluetooth is primarily a communication
protocol for different devices, it also includes a standard to transfer certain types
of data defined by several Bluetooth profiles. Profiles in the current Bluetooth
version include:

1. Blood pressure

2. Thermometer

3. Glucose

4. Heart rate

5. Running speed

and over 20 more.

BLE uses so called GATTs (Generic Attribute Profiles). They are descriptions
for Bluetooth devices, specifying how to communicate with a device and what
functions the device is capable of. Devices can run a GATT server, allowing
external clients to request a list of GATT profiles of local sensors. Using these
profiles clients can register with a sensor on the host device to receive messages
containing sensor values or other information.

BLE is mostly used for irregular updates, meaning a devices stores sensor data
locally and sends batches of data every certain minutes. Continuous transmission
of data costs a lot of power and devices mostly return into a Bluetooth 3.0
transmission mode while doing so. This is probably also one of the reasons
why BLE currently does not support accelerometer and gyroscope data, as these
information are normally used in a real-time context (such as telling a runner
how fast he is running, or how far he has been running up to now).

Although BLE support will not be provided by AndroidSmart as the main use
cases are exactly accelerometer and gyroscope readings to provide linear accel-
eration values, BLE support will be a future goal once the hardware limitations
will be overcome and profiles for these sensors are provided by BLE.

2.3. Wearable Sensing Framework for Human Activity Monitoring 9

2.3 Wearable Sensing Framework for Human Activity Mon-
itoring

Uddin et al. [18] created a wearable sensing framework for human activity mon-
itoring with a focus on performance and a lowered battery consumption by
following three design principles:

• Reducing the data communication overhead between the host and the wear-
able by pre-filtering the data on the wearable and only sending required
data sets.

• Decoupling activity recognition from data processing to allow multiple
applications to reuse the same preprocessed data.

• Providing flexibility to the activity application developer by creating APIs
that ease the development process.

The framework is split up into parts on the wearable and the host device. The
wearable contains the following components as seen in Figure 2.3:

• Data collection. Reads values from the sensors.

• Data preprocessing. Removes noise and sensor artifacts from the raw data.

• Data segmentation. Detects useful and useless data, meaning data that can
be used to detect activities.

• Sensing proxy. Another filter based on rules send by the host device,
allowing the host to accurately filter data on the wearable.

• Local controller. Communication channel between the wearable and the
host.

The host contains the following components:

• Activity application. Application registering with the wearable sensing
middleware that provides rules for the wearable to filter data.

• Wearable sensing middleware. Communication channel between the
wearable and the host, also used for discovery of devices.

Applications can register with the middleware, telling it which device to connect
to, what kind of data is wanted and how the data should be pre-processed to
reduce the overhead. This information is sent to the wearable and processed,
causing the device to only send required data to the host device. This obviously
means that every supported wearable needs to have the application running.

10 Chapter 2. Related Work

Figure 2.3: Wearable Sensing Framework for Human Activity Recognition [18]

Therefore the wearable application needs to be developed for every target wear-
able.

Although very useful, the rule based energy saving features of Uddin et al. are not
going to be implemented in AndroidSmart as this would require to implement
these rules on the companion apps for all devices. As several devices are usable
without a companion app (because they have a service running providing the
sensor values) and as simplicity is an important part of AndroidSmart creating
additional apps is currently not desired.

2.4 Mscape

MScape is an extensible toolkit created by Clayton et al. [6] for Windows Mobile
devices. Focusing on the same problems as ODK sensors, mainly development
overhead for applications using sensors, MScape allows to create so called exten-
sions using the MScape Extension SDK. It is capable of loading these extensions
into an application, allowing these applications to use the sensors of connected
wearables. MScape comes with three example extensions to show what the
framework is capable of.

The heart rate extension is a driver for the Fraunhofer-Institute’s Pulseoximeter
OxiSENS that uses a Bluetooth serial port profile for communication. The extension
connects to the device via the frameworks built-in serial port support and reads

2.5. Dandelion 11

the raw values from the sensor. Afterwards it uses an abstraction to classify the
raw values, such as resting, high activity or low activity.

Using an external serial three-axis compass (built using an accelerometer and
magnetometer), the compass extension provides an abstraction layer to translate
raw sensor values into the closes 8-point compass direction (North, North east,
South etc).

The network discovery extension is less a classical driver for an external sensor
but rather a real network discovery tool supporting multiple network protocols
such as Universal Plug and Play (UPnP) or Apple’s Bonjour. The Bonjour part of
the extension wraps the original Bonjour API into a smaller package, exposing
only required values that allow to find, examine and bind with local network
devices.

As MScape has been created for Windows Mobile, the framework and drivers
are written in C#, making it unusable for Android. While porting it is possible,
creating a new framework allows adding capabilities that MScape does not
provide. MScape is also targeted at external sensors and network systems, not
entire wearables, resulting in certain issues while using external SDKs to access
them as it does with ODK Sensors.

2.5 Dandelion

Lin et al. [11] addressed the challenge of adding external sensors to mobile
applications by creating Dandelion, a framework that allows smartphones to
communicate with external sensors. Dandelion contains three core segments:

1. An abstraction layer called senselet to develop drivers for sensors.

2. A mechanism to integrate senselets into mobile applications.

3. A platform independent distribution and deployment tool for senselet
executables.

12 Chapter 2. Related Work

Dandelion provides two runtimes that are capable of communicating with each
other. The sensor runtime has to be included in a senselet running on a wearable
while the smartphone runtime has to be included in the mobile application
running on a phone. They communicate with each other using an XML-like
interface description language.

Because senselets are heavily dependent on the device they run on, a two-phase
compilation technique is used compile the code. Developers writing senselets
compile it into an intermediate representation (IR) that gets shipped to the user.
Once installed on the phone, a cross compiler compiles the IR into a native binary
for the sensor the user wants to read data from.

Dandelion was prototyped for the Maemo Linux smartphone platform and uses
the Rice Orbit body sensor platform3 to communicate with external sensors. It
is capable of integrating most external sensors on most mobile platforms, but it
requires a cross-compiler for each and every sensor. This compiler simply does
not exist for most of the current existing wearables as they are directly accessed
by manufacturer provided SDKs. AndroidSmart is going to use exactly these
SDKs to access the wearables sensor data.

3http://www.ruf.rice.edu/~mobile/orbit/, Retrieved November 30, 2015.

http://www.ruf.rice.edu/~mobile/orbit/

Chapter 3
Framework Structure

This chapter provides a general overview of the classes available in the frame-
work. Afterwards important individual parts are explained in detail, showing
available functions and illustrating the intended usage of the framework.

3.1 General Structure

The framework can be split up in three separate core segments as seen in Figure
3.1, with each being represented by a single class. Additionally there is a service
or an application running on the wearable providing access to the sensor values.

Figure 3.1: Framework structure

1. DeviceDriver is an abstract class that serves as a basic skeleton for all
drivers. Drivers are running in the background thread of the DriverService
and send data, connection and error messages to a connected client.

13

14 Chapter 3. Framework Structure

2. DriverService is the background service keeping track of running drivers.
Clients always communicate with the service, while the service forwards
requests and orders from each client to the appropriate driver.

3. DriverCommunicator is the main public class to be used and serves as a
front-end client. It is abstract and contains various callback functions. A
developer using the framework inherits a new class from the communicator
and implements the callbacks that get triggered by messages from drivers
and sometimes from the service.

3.1.1 DeviceDriver

The DeviceDriver class shown in Listing 3.1 is the abstract barebone for each
implemented driver. The following public methods are supposed to be used by
an implementation and are called by the service based on requests from a client.

1 public abstract class DeviceDriver {
2 // Methods called by the DriverService
3 public boolean registerSensor(Sensor sensor, Messenger

messenger);
4 public int deregisterSensor(Sensor sensor, Messenger

messenger);
5 public void deregisterSensors(Messenger messenger);
6 // Required functions
7 public void started();
8 protected void addSensorSupport(Sensor... sensors);
9 // Helper methods for an implementation

10 public int registeredCount(Sensor sensor);
11 public int clientCount();
12 public void stop();
13 public void sendData(Sensor sensor, float... data);
14 // Useful fields
15 protected final DriverService service;
16 protected final BluetoothDevice device;
17 }

Listing 3.1: Functions provided by the DeviceDriver class

registerSensor, deregisterSensor and deregisterSensors are called
from the underlying service when receiving a message from a client. These
functions should be implemented by a driver to actually register with the real
sensors. started is mandatory to be called once the initialization of the driver
is fully finished to notify the clients about the driver being ready. Without doing
so, calls to register with a sensor are not processed and the driver is therefore
not functional. Just as started, addSensorSupport needs to be called for the
driver to function. Attempts to register with a sensor that has not previously been

3.1. General Structure 15

added with this function are not processed and create an error. The remaining
functions are helper functions to stop the driver (what is automatically done once
all clients are disconnected) and to send sensor data to each client.

3.1.2 DriverService

The DriverService is a class inherited from a basic Android service. It is
running in a background thread when at least one client attempted to connect to
it. Its purpose is to instantiate drivers when requested and to redirect requests
from a client to the corresponding drivers. The service is not supposed to be
changed or extended. The only change affecting it are new drivers that are added
to the Drivers enum, as the service instantiates drivers based on that enum.

3.1.3 DriverCommunicator

Listing 3.2 shows the DriverCommunicator, an abstract class providing sev-
eral connection methods to register with the service, a driver or a sensor, each
triggering a callback upon success or failure. It is the only class used by a devel-
oper integrating the framework into his or her application. Device and driver
type are set upon initialization.

1 public abstract class DriverCommunicator {
2 public DriverCommunicator(String name, Drivers driver);
3 public boolean connectService(Context context);
4 public void disconnectService();
5 public abstract void onServiceChange(ConnectionState

state);
6 public boolean connectDriver();
7 public void disconnectDriver();
8 public abstract void onDriverChange(ConnectionState

state);
9 public void registerSensor(Sensor sensor);

10 public void deregisterSensor(Sensor sensor);
11 public abstract void onSensorChange(Sensor sensor,

ConnectionState state);
12 public abstract void onErrorRaised(Error error, String

info);
13 public abstract void onDataReceived(Sensor sensor,

float ... data);
14 }

Listing 3.2: Functions of the public DriverCommunicator class

Using the framework happens completely asynchronously. Calling
connectService starts the background service without an immediate response.
Once the service has been started it sends a message back, triggering

16 Chapter 3. Framework Structure

onServiceChange. This is also true for the other connect/register/callback
pairs: connectDriver and onDriverChange as well as registerSensor
and onSensorChange. The expected work flow of a DriverCommunicator af-
ter instantiation is best explained by a flow diagram, starting at connectService:

3.2 Filters

The filter interface is an important addition to the framework that allows the
preprocessing of data before being sent to an application. Filters can either be
statically added to a driver implementation or dynamically to a communicator
instance. Drivers are only supposed to use filters to provide basic functionality,
for example to provide linear acceleration data for the accelerometer sensor or
to deal with inaccurate hardware. Additionally drivers should not use filters to
change the values of raw sensor data (for example when a client registers with
the ACCELEROMETER_RAW sensor). The structure is very simple and can be seen
in Listing 3.3.

3.2. Filters 17

1 public interface Filter {
2 public float[] filter(float ... data);
3 }

Listing 3.3: Filter interface

Each filter implements the filter method, taking an arbitary amount of data values
and returning the processed data. Because the filter method takes a variable
amount of values it can process data of every kind of sensor (for example, the
GravityFilter could be used with a heart rate sensor to identify sudden changes
in the heart rate). As most filters return the same amount of data values as they
processed, filters can be combined in any way. The order of filters can also be
defined to make use of filters that change the amount of values returned.

Clients on the other hand can use filters for anything. Currently there are the
following filters available:

• GravityFilter to remove a static reoccuring value from sensor readings and
provide linear acceleration values for the accelerometer.

• SmoothFilter to smooth data values over time by combining a part of
current readings with old readings.

• High- and LowPassFilter as cut-off filters to remove all readings above or
below a certain threshold (as an average of all values of one reading).

18 Chapter 3. Framework Structure

Chapter 4
Implemented Drivers

This chapter explains implementation details of each driver to demonstrate the
work that was required to add it to the framework and contains information
about advantages and issues of each driver and its corresponding device.

Some smart devices require companion apps that provide the data from the
device itself, as in the case of the Pebble Watch or Android smartwatches. These
companion apps are provided additionally to AndroidSmart and are introduced
and explained in this chapter too.

4.1 Pebble Watch

The Pebble Technology Corporation provides an app for Android4 that is required
to use the Pebble and communicate with it.

They also provide an SDK5 to develop Android apps
that communicate with a Pebble companion app.
These apps are running on the Pebble Watch and
written in C. Only a few C libraries are available,
but a custom Pebble library is included to handle
communication, read sensor values and more. Com-
munication between the apps is handled by sending
PebbleDictionarys with the data inside.

4https://play.google.com/store/apps/details?id=com.getpebble.android&
hl=en, Retrieved December 17, 2015

5http://developer.getpebble.com/sdk/, Retrieved December 17, 2015

19

https://play.google.com/store/apps/details?id=com.getpebble.android&hl=en
https://play.google.com/store/apps/details?id=com.getpebble.android&hl=en
http://developer.getpebble.com/sdk/

20 Chapter 4. Implemented Drivers

4.1.1 Android Driver Implementation

The SDK for Android is available via Gradle6.

1 // build.gradle
2 dependencies {
3 compile ’com.getpebble:pebblekit:3.0.0’
4 }

The communication from PebbleKit with a Pebble Watch is fully asynchronous.
Sending data is done by packing it in a PebbleDictionary and transferring it
to a certain UUID. These UUIDs identify the corresponding companion app on
the watch and are also used to start the companion app.

1 PebbleKit.startAppOnPebble(context, UUID);
2 PebbleDictionary data = new PebbleDictionary();
3 PebbleKit.sendDataToPebbleWithTransactionId(context,

UUID, data, transactionId);

All messages which are sent have to be answered with an ack or a nack. These
answers are received respectively by either a PebbleAckReceiver or a
PebbleNackReceiver. In case of a nack, meaning the message was not ac-
cepted, the driver needs to react and attempt to resolve the situation.

Therefore it tries to redo the same call as before until the Pebble finally accepts
the incoming message.

1 private class PebbleNack extends
PebbleKit.PebbleNackReceiver {

2 public void receiveNack(Context context, int
transactionId) {

3 switch (transactionId) {
4 case REGISTER:
5 sendRegisterMessage();
6 break;
7 default:
8 break;
9 }

10 }
11 }

To avoid an endless loop, sendRegisterMessage internally tracks how often
a connection attempt has been made, stopping the driver after several failures.

Messages sent by the watch are received by a PebbleDataReceiver and have
to be answered as well.

6http://gradle.org/, Retrieved December 18, 2015

http://gradle.org/

4.1. Pebble Watch 21

1 private class PebbleReceiver extends
PebbleKit.PebbleDataReceiver {

2 public void receiveData(Context context, int
transactionId, PebbleDictionary pebbleTuples) {

3 PebbleKit.sendAckToPebble(context, transactionId);
4 }
5 }

Once receiveData is called due to a message from the companion app the sen-
sor values can be extracted from the PebbleDictionary and sent to connected
clients.

The data values retrieved from the watch include the influence of gravity so a
GravityFilter is used to provide linear acceleration values for the
ACCELEROMETER sensor. Data values are also smoothed because the accelerome-
ter of the Pebble Watch jitters a lot.

1 addFilter(Sensor.ACCELEROMETER, new GravityFilter(3));
2 addFilter(Sensor.ACCELEROMETER, new SmoothFilter(3));

Raw values can still be accessed by using the ACCLEROMETER_RAW sensor.

4.1.2 Companion App Details

The companion app listens to incoming messages and waits for a message to tell
it to register with a sensor. Data values of the sensor are buffered in an array to
reduce the overhead from sending data too often, as permanently sending data
leads to connection interruptions. Currently ten readings are buffered before
being sent to the client. As the companion app creates 50 sensor readings per
second data is delayed by 200 miliseconds before being sent. While the Pebble
could create 100 sensor readings per second to lower the delay to 100 miliseconds,
this idea was abandoned to lower the power consumption on the watch.

4.1.3 Challenges and Advantages

The Pebble Watch caused certain issues while creating the driver. Although
the Pebble is capable of notifying a developer in its app that an ACK has been
received, sending new data immediately when this happens leads to a lot of
connection issues. It appears that either the Bluetooth radio in the watch is
unable to send the data fast enough (although it should be ’ready’ when receiving
an ACK because this means the old data was sent completely) or something else
is going wrong in the software layer. This led to the requirement of buffering the
data on the device and sending them in bulk. This obviously has the advantage
of reducing the overhead from packet headers and connection initialization but
it also means that the phone receives data delayed. The current delay of 200
miliseconds is noticeable when plotting the data on the phone but it is better than

22 Chapter 4. Implemented Drivers

a 500–1000 milisecond interrupt roughly every five seconds when using the old
method.

Most importantly the reduced overhead from packet headers does not only affect
the Pebble but obviously also the phone, saving battery life and reducing the
current load on the device.

4.2 Microsoft Band

Microsoft also provides an app for Android called Microsoft Health. It is required
to use the Microsoft Band and communicate with it. The SDK allows to directly
register with the sensor, meaning there is no additional companion app required.

4.2.1 Android Driver Implementation

The SDK is not available via Gradle but can be downloaded manually7 and added
to the {module}/libs directory.

The communication can be done synchronously by waiting for the calls to return
or asynchronously by implementing certain callbacks. The provided implemen-
tation waits for messages to return. This requires the driver to implement the
Runnable interface and run in its own thread to not block the main thread of
the framework.

Connecting to the band is easy by querying all available bands and selecting one.

1 BandInfo[] pairedBands =
BandClientManager.getInstance().getPairedBands();

2 bandClient = BandClientManager.getInstance()
3 .create(service.getApplicationContext(),

pairedBands[0]);
4 BandPendingResult<ConnectionState> pendingResult =

bandClient.connect();

7http://developer.microsoftband.com/bandSDK/, Retrieved December 17, 2015

http://developer.microsoftband.com/bandSDK/

4.3. Android Wear 23

Afterwards one can register with a sensor.

1 gyroscopeListener = new GyroscopeListener();
2 bandClient.getSensorManager()
3 .registerGyroscopeEventListener(gyroscopeListener,

SampleRate.MS32);

Data values are transmitted in a callback.

Just like for the Pebble Watch data values include the influence of gravity so a
GravityFilter is used to provide linear acceleration values for the ACCELEROMETER
sensor.

1 addFilter(Sensor.ACCELEROMETER, new GravityFilter(3));

Raw values can still be accessed by using the ACCLEROMETER_RAW sensor.

4.2.2 Challenges and Advantages

As the SDK allows direct communication with the Band without a companion
app users have to download anything apart from the original app they wanted
to use.

Microsofts API does not use the same format as Androids internal Bluetooth API,
so matching names between the originally selected paired device and Microsofts
device query is not possible (and Microsofts SDK does not expose the MAC
address of the device). This means that the driver potentially uses the wrong
device if multiple Microsoft Bands are connected with one phone. However,
even Androids built in support for multiple wearables is still not stable, so this
drawback has been accepted as the support relies in this functionality of Android.
To work around this, the front-end DriverCommunicator would need a change to
be able to query devices based on Microsofts SDK. This is not wanted, as driver
code should be separated from the framework code itself. Potentially this could
be solved by expanding the base driver code, allowing the framework to run
certain parts of a driver before it has been instantiated (in this case query for
available devices). Considering the issues arising with it and the fact that barely
anyone uses multiple identical wearables with one phone this feature was not
added but thought about for future work.

4.3 Android Wear

Android Wear has the advantage of being natively supported by Android. The
connection is established by using the GoogleApiClient and communication
is handled by the MessageAPI.

24 Chapter 4. Implemented Drivers

4.3.1 Android Driver Implementation

Although the wearable API is part of Android, it is not enabled by default but
comes packed as individual libraries. They are available via Gradle.

1 dependencies {
2 compile ’com.google.android.support:wearable:1.2.0’
3 compile

’com.google.android.gms:play-services-wearable:
7.5.0’

4 }

The Android driver implements the MessageListener interface to receive
messages from a watch as well as the ConnectionCallbacks and
OnConnectionFailedListener interfaces to be notified about the connection
status. After connecting a GoogleApiClient

1 googleApiClient = new GoogleApiClient.Builder(service)
2 .addApi(Wearable.API)
3 .addConnectionCallbacks(this)
4 .addOnConnectionFailedListener(this)
5 .build();
6 googleApiClient.connect();

the driver registers itself as a listener.

1 Wearable.MessageApi.addListener(googleApiClient, this);

After sending messages to the wearable

1 Wearable.MessageApi.sendMessage(googleApiClient, node,
START, null);

responses are received in the MessageListener callback.

In comparison to the Pebble Watch or the Microsoft Band the basic driver for
Android Wear does not use any filters. The sensor values are mostly jitter free
on the device used for testing and Android Wear provides its own implemen-
tation of a virtual linear acceleration sensor. Filters can still be used in the
DriverCommunicator to further filter the data before it is sent to the applica-
tion (as in the case of worse devices to remove any jitter its sensors have).

4.3.2 Companion App Details

In comparison to the Android driver, the companion app does not use a
MessageListener but a WearableListenerService. If this service is prop-
erly set up in the manifest, messages from Android apps with the same applica-
tion id as the wearable app automatically cause the service to be instantiated to
transmit the message.

4.3. Android Wear 25

If said service receives a START message it starts a secondary service and trans-
mits the id of the watch to it.

1 Intent inte = new Intent(getApplicationContext(),
DataService.class);

2 inte.putExtra(NODE, messageEvent.getSourceNodeId());
3 startService(inte);

The secondary service reads sensor values from the wearable

1 sensorManager.registerListener(instance, sensor,
SensorManager.SENSOR_DELAY_FASTEST);

and sends them to the phone.

1 // buffer is a byte array containing the sensor values
and an

2 // identifier for the sensor
3 Wearable.MessageApi.sendMessage(googleApiClient, node,
4 ConnectionListener.DATA, buffer.array())
5 .setResultCallback(new MessageCallback());

4.3.3 Challenges and Advantages

Just as Android allows to read sensor values from all Android devices, the
Android Wear driver allows to read sensor values from all Android Wear devices.
Therefore this driver provides support for a broad range of devices.

Creating the driver caused some issues, because the application id of an Android
app and a wearable app have to be the same. This is intended as a safety feature
to ensure that only the wearable app that belongs to a mobile app receives the
corresponding messages. In this case however the companion app is supposed
to be used by multiple mobile applications. It seems that this use case is not
intended by Google and can not be circumvented for now. This means a mobile
developer either has to inherit the id of the wearable application, or ship a new
version of wearable application with a matching id.

26 Chapter 4. Implemented Drivers

Chapter 5
Testing Application

To test the framework and its drivers an Android app has been created using the
framework to read accelerometer values of connected wearables.

5.1 App Usage

The application has three options in a menu.

Figure 5.1b shows the device selection menu that allows to select a paired Blue-
tooth device to connect to. Currently devices have to be paired to be used by the
framework, so showing all paired devices is sufficient. The application does not
check if the devices on the list are currently available but considering the average
amount of paired devices the list should normally be very short (most times only
a single value).

In Figure 5.1c the Select Device Type creates a dialog that allows the user to select
which type of device he wants to connect to. The list has been created by using
the Drivers enum.

Pressing Start/Stop Communicator binds with the background service, starts the
selected driver and registers with the accelerometer (filtered linear acceleration in
this case). Once values are transmitted by the framework the app shows them as
seperated x, y and z values and also plots them on a graph as seen in Figure 5.1d.

27

28 Chapter 5. Testing Application

(a) App Menu (b) Driver Type Selection

(c) Device Type Selection (d) Driver running

Figure 5.1: Framework testing application

5.2. Implementation 29

5.2 Implementation

The testing app contains the framework in its module/{libs} folder and added it
to its Gradle file.

1 dependencies {
2 compile fileTree(dir: ’libs’, include: [’*.jar’])
3 compile (’:androidsmart@aar’) {
4 transitive = true
5 }
6 compile ’com.getpebble:pebblekit:3.0.0’
7 }

The transitive flag is required to automatically include libraries the framework
uses. The Pebble SDK still needs to be added manually.

The app itself is a single Activity containing the graph and the menu. Once the
selections are made and the starting command is selected, a new
DriverCommunicator is created and a connection to the background service is
established.

1 private void startStopCommunicator() {
2 driverCommunicator = new DriverCommunicator(name,

driver) { // callbacks shown afterwards
3 }
4 driverCommunicator.connectService(getApplication()
5 .getApplicationContext());
6 }

As DriverCommunicator is abstract all callbacks need to be implemented. The
implementations are shown in order of their sequence of actions.

Once the connection with the service is established the clients tries to connect to
the corresponding driver.

1 @Override
2 public void onServiceChange(ConnectionState

connectionState) {
3 if(connectionState == ConnectionState.CONNECTED) {
4 connectDriver();
5 }
6 }

Once the connection to the driver is established the client tries to register with the
accelerometer of the device (the accelerometer is used because all initial testing
devices had such a sensor).

30 Chapter 5. Testing Application

1 @Override
2 public void onDriverChange(ConnectionState

connectionState) {
3 if(connectionState == ConnectionState.CONNECTED) {
4 registerSensor(Sensor.ACCELEROMETER);
5 }
6 }

The callback called onSensorChange that triggers once successfully connected
is not used in this implementation as the app simply waits for incoming data and
plots them on the graph.

1 @Override
2 public void onDataReceived(Sensor sensor, float... data) {
3 xText.setText("x: "+data[0]);
4 yText.setText("y: "+data[1]);
5 zText.setText("z: "+data[2]);
6 // Plotting the values on the graph
7 }

Once the menu is used to stop the application it first sends a stop request to the
driver (that shuts itself down because there are no further connected clients) and
then disconnects from the service.

1 if (driverCommunicator.serviceConnected()) {
2 driverCommunicator.disconnectDriver();
3 driverCommunicator.disconnectService();
4 }

The corresponding callbacks are triggered again (this time transmitting
ConnectionState.DISCONNECTED) but are not required for this application
and are therefore not used.

5.3 Testing

The application has been tested on a Nexus 5 device with several wearables: a
Pebble Watch, a Microsoft Band and a Moto 360 Android Wear watch.

Connecting and disconnecting devices works without any problems. Selecting
invalid combinations (such as a paired Android Watch but selecting the Band
driver) leads to the driver in the background automatically shutting down as no
Band could be found by the driver and no other client is connected (multiple ap-
plications can use the background service at the same time). This is the intended
behavior. Physically moving the devices far away from the phone or shutting
them down triggers a callback in the driver in all cases, causing the driver to shut
down and notify the framework - and therefore the main application.

Chapter 6
Conclusions

As seen in the introduction, the wearable market (hardware as well as software)
is a very fast growing market that has the capability to grow even further. As the
manufacturers have neither a standard operating system nor a common SDK or
API, developers that want to create apps for (but not limited to) the even faster
growing market of healthcare and fitness applications face the issue that adding
support for these wearables is a huge amount of work that gets replicated by
each and every developer over and over again.

A structure for a framework solving this issue has been proposed and imple-
mented. Drivers for three different devices have been created and added to the
framework. Lastly an example application has been created to test the framework
and show its general workflow. The application is capable of freely switching
between wearables and has been tested with several different devices. It is ca-
pable of reading sensor values of all of them. Movements are reported on the
same scale allowing a mobile developer to create code that is independent of the
connected wearable.

While the framework and the testing app are in a functional state, there are
certain existing limitations. The biggest limitation comes from the manufacturers
themselves. Many devices use a proprietary protocol for the communication
with their provided app. To add support for such devices it is required that the
manufacturer provides an SDK that exposes the sensors. While for example the
Microsoft Band and Pebble Watch do so, the fitness trackers from Garmin8 or
Jawbone9 do not, making it impossible to add support without reverse engineer-
ing their protocol. This is not attempted in this thesis and therefore support for
these devices is not provided.

8https://explore.garmin.com/en-US/vivo-fitness/, Retrieved December 13, 2015
9https://jawbone.com/up/developer/faq, Retrieved November 30, 2015

31

https://explore.garmin.com/en-US/vivo-fitness/
https://jawbone.com/up/developer/faq

32 Chapter 6. Conclusions

Another limitation comes from the hardware built into the devices. Although the
framework tries to provide data in the same range and as accurate as possible,
different quality accelerometers provide different data sets. In addition to that the
Bluetooth transmission speed and quality also cause devices to provide different
data values at different times. A good example for this issue is the Bluetooth
radio of the Pebble Watch that causes regular short connection interruptions
when transmitting data.

Although several manufacturers provide SDKs to develop applications for their
devices and communicate with them from a smartphone, reading sensor values
without creating a companion app is rarely possible. This means that after a user
downloaded an application with AndroidSmart support, he still has to download
an appropriate companion app or the smartphone app will not work.

While the limitations appear to be huge, these limitations affect everyone in the
industry. If a manufacturer does not want to open their protocol there is not
much a mobile developer can do about it and it does not matter if he uses the
framework or not. For all other devices AndroidSmart provides an easy and
standardized access to sensor data that otherwise would cause a huge amount of
work to acquire.

Chapter 7
Future Work

As seen with the framework of Uddin et al. [18], a rule-based system to filter
sensor data on wearables can reduce the overhead of data communications by
15-50%[18]. Although not practical for devices that do not require an additional
companion app by default, adding additional filters in the form of a rule-based
system can still be done.

While it is quite a lot of work if many devices are to be supported, companion
apps can be extended by a protocol to accept rules from a phone. Each individual
device would filter the data beforehand and only send requested data sets. For
devices that do not require an additional application the rule based filtering
can be done on the phone just as the current filter implementation does. This
approach allows companion apps to save power while developers can filter data
even further without noticing a difference between devices with a companion
app and devices without.

Currently devices need to be paired with the phone for the framework to work.
This is a requirement that was deemed to be acceptable as interacting with non-
paired devices (such as certain BLE devices) requires constant scanning on the
phone to find said devices, causing huge delays in the flow of the application.
Adding support for BLE is desirable in the future to support a wider range of
devices, even though the usage of these devices in this way is limited and slow.

As identification of devices is done using the Android Bluetooth API, scanning
processes of external SDKs are currently not supported. This means that if
multiple devices are present that can only be seperated using an external SDK,
current drivers simply use the first available. As multi-wearable systems are
rarely used, especially not with the same device multiple times, this is not a big
issue. Still, an extension to the driver barebone including several static methods,
such as device scan or information about the underlying code, can be added in
the future.

33

34 Chapter 7. Future Work

AndroidSmart has only been tested in the presented example implementation for
now. Real life tests with real users and different applications have to be done to
prove the robustness of the framework and reveal potential flaws. This includes
problems when accessing the framework from multiple applications at once but
also other issues that can occur when using the framework a lot.

Especially mobile developers have to test the framework to find design flaws or
missing functionality. While the available methods are sufficient for the testing
application, developers might need other functions or information for their own
application.

Bibliography

[1] Number of available applications in the Google
Play Store from December 2009 to February 2015.
http://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/,
2015. Retrieved August 23, 2015.

[2] Number of apps available in leading app stores as of July
2015. http://www.statista.com/statistics/276623/
number-of-apps-available-in-leading-app-stores/, 2015.
Retrieved August 23, 2015.

[3] Waylon Brunette, Rita Sodt, Rohit Chaudhri, Mayank Goel, Michael Falcone,
Jaylen Van Orden, and Gaetano Borriello. Open Data Kit Sensors: A Sensor
Integration Framework for Android at the Application-level. In Proceedings
of the 10th International Conference on Mobile Systems, Applications, and Services,
MobiSys ’12, pages 351–364, New York, NY, USA, 2012. ACM. ISBN 978-1-
4503-1301-8. doi: 10.1145/2307636.2307669. URL http://doi.acm.org/
10.1145/2307636.2307669.

[4] Bill Buxton. 31.1: Invited Paper: A Touching Story: A Personal Perspective
on the History of Touch Interfaces Past and Future. SID Symposium Digest of
Technical Papers, 41(1):444–448, 2010. ISSN 2168-0159. doi: 10.1889/1.3500488.
URL http://dx.doi.org/10.1889/1.3500488.

[5] Rohit Chaudhri, Waylon Brunette, Bruce Hemingway, and Gaetano Borriello.
ODK Sensors: An Application-level Sensor Framework for Android Devices.
In Proceedings of the 3rd ACM Symposium on Computing for Development, ACM
DEV ’13, pages 30:1–30:2, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-
1856-3. doi: 10.1145/2442882.2442918. URL http://doi.acm.org/10.
1145/2442882.2442918.

[6] B. Clayton, R. Hull, T. Melamed, and R. Hawkes. An extensible toolkit for
context-aware mobile applications. In Wearable Computers, 2009. ISWC ’09.
International Symposium on, pages 163–164, Sept 2009. doi: 10.1109/ISWC.
2009.42. URL http://dx.doi.org/10.1109/ISWC.2009.42.

[7] Sam Costello. How Many Apps Are in the iPhone App Store?
http://ipod.about.com/od/iphonesoftwareterms/qt/
apps-in-app-store.htm, October 2014. Retrieved August 23,
2015.

35

http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://doi.acm.org/10.1145/2307636.2307669
http://doi.acm.org/10.1145/2307636.2307669
http://dx.doi.org/10.1889/1.3500488
http://doi.acm.org/10.1145/2442882.2442918
http://doi.acm.org/10.1145/2442882.2442918
http://dx.doi.org/10.1109/ISWC.2009.42
http://ipod.about.com/od/iphonesoftwareterms/qt/apps-in-app-store.htm
http://ipod.about.com/od/iphonesoftwareterms/qt/apps-in-app-store.htm

[8] D. Desjardins. Mobile Healthcare Apps Slated for Federal Over-
sight. http://healthleadersmedia.com/content.cfm?topic=
TEC&content_id=288733, January 2015. Retrieved August 09, 2015.

[9] Carles Gomez, Joaquim Oller, and Josep Paradells. Overview and Evaluation
of Bluetooth Low Energy: An Emerging Low-Power Wireless Technology.
Sensors, 12(9), June-August 2012. doi: 10.3390/s120911734. URL http:
//dx.doi.org/10.3390/s120911734.

[10] A. Kailas, Chia-Chin Chong, and F. Watanabe. From Mobile Phones to
Personal Wellness Dashboards. Pulse, IEEE, 1(1):57–63, July 2010. ISSN
2154-2287. doi: 10.1109/MPUL.2010.937244. URL http://dx.doi.org/
10.1109/MPUL.2010.937244.

[11] Felix Xiaozhu Lin, Ahmad Rahmati, and Lin Zhong. Dandelion: A Frame-
work for Transparently Programming Phone-centered Wireless Body Sensor
Applications for Health. In Wireless Health 2010, WH ’10, pages 74–83, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-989-3. doi: 10.1145/1921081.
1921091. URL http://doi.acm.org/10.1145/1921081.1921091.

[12] Amanda Martin. GfK forecasts 51 million wearables
will be bought globally in 2015. http://www.gfk.com/
news-and-events/press-room/press-releases/pages/
gfk-forecasts-51-million-wearables-sold-globally-2015.
aspx, March 2015. Retrieved August 14, 2015.

[13] Ariel Michaeli. App Stores Growth Accelerates in 2014. http://blog.
appfigures.com/app-stores-growth-accelerates-in-2014/,
January 2015. Retrieved August 23, 2015.

[14] Nuria Oliver and Fernando Flores-Mangas. HealthGear: A Real-time Wear-
able System for Monitoring and Analyzing Physiological Signals. Wearable
and Implantable Body Sensor Networks, International Workshop on, 0:61–64, 2006.
doi: 10.1109/BSN200627. URL http://doi.ieeecomputersociety.
org/10.1109/BSN.2006.27.

[15] M. Patel and Jianfeng Wang. Applications, challenges, and prospective
in emerging body area networking technologies. Wireless Communications,
IEEE, 17(1):80–88, February 2010. ISSN 1536-1284. doi: 10.1109/MWC.2010.
5416354. URL http://dx.doi.org/10.1109/MWC.2010.5416354.

[16] I. Perez. All in Good Time. http://texascooppower.com/
texas-stories/people/all-in-good-time, February 2012. Re-
trieved November 13, 2015.

[17] K. Taylor. Connected health: How digital technology is transforming health
and social care. Deloitte Centre for Health Solutions, 2015.

36

http://healthleadersmedia.com/content.cfm?topic=TEC&content_id=288733
http://healthleadersmedia.com/content.cfm?topic=TEC&content_id=288733
http://dx.doi.org/10.3390/s120911734
http://dx.doi.org/10.3390/s120911734
http://dx.doi.org/10.1109/MPUL.2010.937244
http://dx.doi.org/10.1109/MPUL.2010.937244
http://doi.acm.org/10.1145/1921081.1921091
http://www.gfk.com/news-and-events/press-room/press-releases/pages/gfk-forecasts-51-million-wearables-sold-globally-2015.aspx
http://www.gfk.com/news-and-events/press-room/press-releases/pages/gfk-forecasts-51-million-wearables-sold-globally-2015.aspx
http://www.gfk.com/news-and-events/press-room/press-releases/pages/gfk-forecasts-51-million-wearables-sold-globally-2015.aspx
http://www.gfk.com/news-and-events/press-room/press-releases/pages/gfk-forecasts-51-million-wearables-sold-globally-2015.aspx
http://blog.appfigures.com/app-stores-growth-accelerates-in-2014/
http://blog.appfigures.com/app-stores-growth-accelerates-in-2014/
http://doi.ieeecomputersociety.org/10.1109/BSN.2006.27
http://doi.ieeecomputersociety.org/10.1109/BSN.2006.27
http://dx.doi.org/10.1109/MWC.2010.5416354
http://texascooppower.com/texas-stories/people/all-in-good-time
http://texascooppower.com/texas-stories/people/all-in-good-time

[18] Mostafa Uddin, Ahmed Salem, Ilho Nam, and Tamer Nadeem. Wearable
Sensing Framework for Human Activity Monitoring. In Proceedings of the
2015 Workshop on Wearable Systems and Applications, WearSys ’15, pages
21–26, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3500-3. doi: 10.
1145/2753509.2753513. URL http://doi.acm.org/10.1145/2753509.
2753513.

[19] Neil Zhao. Full-Featured Pedometer Design Realized with 3-Axis Digital Ac-
celerometer. Analog Dialogue, 44(06), June 2010. URL http://www.analog.
com/static/imported-files/tech_articles/pedometer.pdf.

[20] Vincent W. Zheng, Yu Zheng, Xing Xie, and Qiang Yang. Collaborative
Location and Activity Recommendations with GPS History Data. In Pro-
ceedings of the 19th International Conference on World Wide Web, WWW ’10,
pages 1029–1038, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-799-8.
doi: 10.1145/1772690.1772795. URL http://doi.acm.org/10.1145/
1772690.1772795.

37

http://doi.acm.org/10.1145/2753509.2753513
http://doi.acm.org/10.1145/2753509.2753513
http://www.analog.com/static/imported-files/tech_articles/pedometer.pdf
http://www.analog.com/static/imported-files/tech_articles/pedometer.pdf
http://doi.acm.org/10.1145/1772690.1772795
http://doi.acm.org/10.1145/1772690.1772795

	 Introduction
	Wearables
	Mobile Applications for Smartphones
	The Problem
	The Goal

	 Related Work
	ODK Sensors
	Bluetooth Low Energy
	Wearable Sensing Framework for Human Activity Monitoring
	Mscape
	Dandelion

	 Framework Structure
	General Structure
	DeviceDriver
	DriverService
	DriverCommunicator

	Filters

	 Implemented Drivers
	Pebble Watch
	Android Driver Implementation
	Companion App Details
	Challenges and Advantages

	Microsoft Band
	Android Driver Implementation
	Challenges and Advantages

	Android Wear
	Android Driver Implementation
	Companion App Details
	Challenges and Advantages

	 Testing Application
	App Usage
	Implementation
	Testing

	 Conclusions
	 Future Work
	Bibliography

