
SAARLAND UNIVERSITY

Faculty of Natural Sciences and Technology I
Department of Computer Science

Concepts, Implementation and Evaluation
of spatio-temporal Visualizations

of Bushfires

Bachelor Thesis

André Zenner
Bachelor’s Program of Computer Science
September 2013

Supervisor:
Prof. Dr. Antonio Krüger, German Research Center for Artificial Intelligence,
Saarbrücken, Germany

Reviewers
Prof. Dr. Antonio Krüger, German Research Center for Artificial Intelligence,
Saarbrücken, Germany
Dr. Jörg Baus, German Research Center for Artificial Intelligence,
Saarbrücken, Germany

Submitted
16th September, 2013

Saarland University
Faculty of Natural Sciences and Technology I
Department of Computer Science
Campus - Building E1.1
66123 Saarbrücken
Germany

Eidesstattliche Erklärung:

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig ver-
fasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.

Statement in Lieu of an Oath:

I hereby confirm that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Saarbrücken, 16th September, 2013

Einverständniserklärung:

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent:

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, 16th September, 2013

Acknowledgements

At this point, I want to express my appreciation to everybody that helped me
writing this thesis.

First and foremost, I want to thank Professor Antonio Krüger for offering me the
great opportunity to work on this exciting topic, for motivating me during the
whole process, for his always kind, patient and competent support and for his
time and effort without which this thesis would not have been possible.

I also want to thank Professor Matt Duckham, Doctor Susanne Bleisch, Lisa
Cheong and Professor Allison Kealy from the University of Melbourne for the
collaboration and their kind and helpful support and feedback from Australia.

In addition, I would like to thank Denise Paradowski for taking her time intro-
ducing me to the survey-system and I am thankful to Michael Piotrowski and
Frederic Kerber for the technical support regarding LATEX.

Special thanks goes to my parents for their encouragement and their support
during my whole studies, as well as to my friends and fellow students for the
helpful ideas that came up in formal and informal discussions.

Last but not least, I thank everybody that participated in the online-study.

iv

Abstract

Smartphone applications and websites that provide public information about
bushfires in bushfire prone regions are becoming increasingly popular and im-
portant. This thesis focuses on new visualizations of publicly available bushfire
data. The main goal is the development of visualization concepts and algorithms,
their implementation in a prototype system and their evaluation.
A comparison of currently used public visualizations in apps and websites with
expert visualizations used by professionals reveals a gap between the very simple
and intuitive but less informative public visualizations and the highly informa-
tive but very complex and not readily accessible visualizations in expert systems.
To fill this gap, seven new approaches for public visualization are developed,
aiming to communicate more relevant information for laypersons to enable bet-
ter decision-making. For generating these more personalized and informative
visualizations, additional data about the user’s location, the spatio-temporal
development of the fire and information about the streets in the environment are
used. For each visualization, the pseudocodes for the corresponding algorithms
are depicted.
Additionally, an easily extendible prototype system is developed, implementing
all different visualizations for testing and demonstration.
A final online study, using visualizations of scenarios generated with the proto-
type implementation, investigates the communicated threat and the popularity
of the currently used and the new visualizations. The results indicate that the
communicated threat of some new approaches is higher than the currently used
ones’. Moreover, users prefer visualizations providing pre-processed information
about the spatio-temporal development of the bushfire and information related
to the users position and environment. Due to this, the four most requested
visualizations are new concepts.
Eventually, some recommendations for further work in this area are given.

v

vi

Contents

1 Motivation 1

1.1 Bushfires . 1

1.2 Bushfire-Warn-Applications and Websites 3

2 Goals 5

2.1 Concepts . 5

2.2 Implementation . 6

2.3 Evaluation . 6

3 Related Work 7

3.1 Important Aspects in the Related Literature 7

3.2 Expert - Visualizations by Black et al. 11

3.3 Current Bushfire Visualizations . 13

3.3.1 Public Visualizations . 13

3.3.2 Expert Visualizations . 16

3.3.3 Conclusion . 16

4 Concepts - The Visualization Algorithms 19

4.1 Overview . 19

4.2 Nearest Point Algorithm . 21

4.2.1 Motivation . 21

4.2.2 Algorithm . 21

4.2.3 Pseudocode . 22

4.2.4 Comments . 22

4.3 Fire Frontline Algorithm . 24

4.3.1 Motivation . 24

4.3.2 Algorithm . 24

4.3.3 Pseudocode . 25

4.3.4 Comments . 25

4.4 Nearest Point Development Algorithm 27

vii

4.4.1 Motivation . 27

4.4.2 Algorithm . 27

4.4.3 Pseudocode . 28

4.4.4 Comments . 28

4.5 Fire Frontline Development Algorithm 30

4.5.1 Motivation . 30

4.5.2 Algorithm . 30

4.5.3 Pseudocode . 31

4.5.4 Comments . 31

4.6 Spread Algorithm . 33

4.6.1 Motivation . 33

4.6.2 Algorithm . 33

4.6.3 Pseudocode . 34

4.6.4 Comments . 35

4.7 Danger Zone Algorithm . 37

4.7.1 Motivation . 37

4.7.2 Algorithm . 37

4.7.3 Pseudocode . 39

4.7.4 Comments . 39

4.8 Street Algorithm . 41

4.8.1 Motivation . 41

4.8.2 Algorithm . 41

4.8.3 Pseudocode . 43

4.8.4 Comments . 43

4.9 Conclusion . 45

5 Implementation 47

5.1 Overview . 47

5.2 Software Architecture . 48

5.3 Features and Graphical User Interface 50

6 Evaluation 53

6.1 Overview . 53

6.2 Study Structure . 54

viii

6.3 Study Results . 56

7 Conclusion and Outlook 63

7.1 Conclusion . 63

7.2 Recommendations for Further Work 65

List of Algorithms 67

List of Tables 69

List of Figures 71

Bibliography 73

ix

Chapter 1
Motivation

Fire is a fascinating natural phenomenon with many different qualities. Mankind
has always tried to control fire in order to use it for their purposes and since
humans are able to make fire, they developed rapidly and included it in many
areas of life. But even today, humans still are not able to control the power of
fire completely. In situations of dangerous fire hazards, people rapidly become
aware of nature’s destructive force and they realize, that this force must not be
underestimated.

1.1 Bushfires

One phenomenon belonging to the class of dangerous fire hazards threatening
many people’s live every year is the bushfire. According to the common definition,
a bushfire is "any uncontrolled, non-structural fire burning in a grass, scrub, bush, or
forested area" [1]. Other names for bushfires are brush fire, wildfire, forest fire, desert
fire, grass fire, hill fire, peat fire, vegetation fire and veldfire [2]. They commonly occur
in Australia because of the hot and dry climate, but of course they also occur in
many regions all around the globe, in which the climate dries out the vegetation
and makes it possible fuel for bushfires.
Bushfires are characterized "in terms of their physical properties, their fuel type, and
the effect that weather has on the fire" [2] and they are generally hard to predict. They
typically start at a point of ignition and in the following spread with different
velocities in several spread directions. Bushfires generally burn at multiple fire-
frontlines that move forward and burn down large areas. The movement and
mutation of a bushfire depends on many complex variables like e.g. type of fuel
(underlying vegetation), wind speed and direction, temperature, the slope of
the underlying terrain and so on. Furthermore, changes in those variables like a
change of the wind speed or direction can have dangerous effects on bushfires

1

2 Chapter 1. Motivation

causing them to jump forward or to instantly change their spread direction.
As difficult as the prediction of the fire’s spread is the prediction of where and
when such a bushfire starts. There is a wide range of typical causes, some of
them are natural whereas some of them are related to human behavior. Natural
causes involve "lightning, volcanic eruption, sparks from rockfalls, and spontaneous
combustion" [2] and human involved ignitions originate e.g. from campfires,
agriculture burns, accidents, machinery or arson [3].

That bushfires are a serious threat for regions with suitable climate conditions
becomes apparent, when looking at the statistics of the last catastrophic bushfires
in Australia. The so called Black Saturday bushfires burned an area of ca. 450 000
ha (which is ca. 1.75 times the area of the Saarland with ca. 257 000 ha) in just a
few days during February 2009 in Victoria. The damage was immense with 173
fatalities, 414 injuries and more than 3500 structures destroyed. Thousands of
people became homeless and more than 400 fires were recorded on Saturday 7th

February 2009 in the Victorian region. [4]

Figure 1.1: A bushfire threatening a house1

1http://www.bushfireinformation.com.au/wp-content/uploads/2012/11/
Bushfire-Information.jpg [last accessed Sept. 5, 2013]

http://www.bushfireinformation.com.au/wp-content/uploads/2012/11/Bushfire-Information.jpg
http://www.bushfireinformation.com.au/wp-content/uploads/2012/11/Bushfire-Information.jpg

1.2. Bushfire-Warn-Applications and Websites 3

1.2 Bushfire-Warn-Applications and Websites

To prevent fatalities and to enable appropriate decision-making by people lo-
cated in bushfire-prone regions, informing the public early and understandably
is a crucial aspect. Kunz et al. mention in their paper "Understanding the Risk:
Establishing of an Interactive System for the Visualization and Exploration of Natural
Hazards and associated Uncertainties" some important preconditions for a success-
ful hazard response and crucial aspects are "emergency management and planning,
early warning, alerting of the population [and] strengthening of local knowledge" [5].
These aspects are exactly the goal of bushfire-warn-apps for mobile devices and
bushfire-warn-websites that emerged in the last years. They are available for many
countries all around the world and especially popular in Australia.
They aim to provide information about the current bushfire situation to people
located in bushfire-prone regions. Generally, such apps and websites provide a
list of current bushfires that is based on publicly available bushfire data provided
by the responsible authorities. In the recent past, these apps and websites started
to provide information about the geographical location of the bushfires by dis-
playing them on a map. Most of these apps additionally provide some special
features like "warning sms" that are sent out in special cases and possibilities to
upload pictures of the fires for other users.

Figure 1.2: Screenshot of the CFA Fire Ready app2

2http://cdn2.ubergizmo.com/wp-content/uploads/2013/02/
FireReady-App-Screenshot1.jpg [last accessed Sept. 5, 2013]

http://cdn2.ubergizmo.com/wp-content/uploads/2013/02/FireReady-App-Screenshot1.jpg
http://cdn2.ubergizmo.com/wp-content/uploads/2013/02/FireReady-App-Screenshot1.jpg

4 Chapter 1. Motivation

When taking a closer look to how the fires are visualized in the publicly avail-
able apps and websites, it is remarkable, that almost all of them use the same
visualization technique: a single iconic fire marker placed on the map. A few
recent websites started to integrate a visualization of the current fire area; but up
to now, none of the available apps provided a visualization other than a single
marker per fire. The advantages of such simple visualizations are, that they are
intuitive to interpret and easy to implement. But at the same time, they have a
great disadvantage: the accuracy and the amount of valuable information that is
communicated.
Of course, there are also bushfire visualizations that provide much more valu-
able information. These visualizations are typically used by professionals and
expert users who are occupationally or scientifically concerned with these types
of visualizations. But despite their advantage of containing much information,
their drawback is that this information is encoded in the visualization and thus
for laypersons not intuitively interpretable. Another important aspect here is,
that they are generally not available to the public.
This bachelor thesis will compare both kinds of visualizations in a little more
detail in the Related Work (3) section, but the most important outcome of the
investigation is, that there is a gap between simple but less informative visualiza-
tions and informative but very complex visualizations.
It is this gap, that this thesis tries to fill by developing new approaches for the
visualization of bushfires suitable for this kind of publicly available apps and
websites and by evaluating them using a prototype implementation. The result-
ing visualizations aim to be easy to understand for laypersons while at the same
time try to communicate more important information than the currently used
visualizations.

Chapter 2
Goals

The following sections will define the goals of this thesis which can be divided
into three main parts:

2.1 Concepts

The first goal is the development of several concepts for the visualization of
bushfires and the development of algorithms implementing these concepts.

The target platform are publicly available mobile applications and websites that
aim to inform the public about the current bushfire situation in their region. To be
suitable for this field of application, the concepts should exploit the data available
in mobile devices and websites. This means that the algorithms implementing
the developed concepts should build upon the publicly available bushfire-data,
GPS-data that is available in mobiles or street-data that is available online.
The developed visualization approaches should offer an alternative to the cur-
rently widespread simple marker-placement visualization and the perimeter
visualization by fulfilling some important properties. They aim to :

• integrate information about the bushfire’s spatio-temporal development

• integrate information about the user’s position and environment

• be intuitive to interpret and easy to understand for laypersons

• provide more relevant information than current visualizations used in apps
and websites

5

6 Chapter 2. Goals

In this way, they are designed to fill the gap introduced in the last part of the
Related Work section (3) between complex expert visualizations and the current
less informative public approaches.

2.2 Implementation

The second part is the implementation of all developed visualization concepts
and algorithms in Java3.

The task is to develop a prototype system in Java, offering an environment for
testing and demonstrating the developed algorithms and for comparing the
resulting visualizations with the current visualization approaches. Moreover, the
program should be able to generate visualizations suitable for the evaluation
phase.

2.3 Evaluation

The last goal of the bachelor thesis is to evaluate the developed visualization
approaches by conducting a study investigating the communicated threat of the
different visualizations and their popularity.

In the study, users are confronted with different scenarios and for each visualiza-
tion, the communicated threat should be assessed and eventually compared to
the other visualizations’.
Additionally, the users’ acceptance of the developed visualizations should be
acquired and compared to the popularity of the currently used visualizations.
These results will then show, whether the developed approaches are a suitable
alternative for public bushfire warn apps and websites.

3http://www.java.com/en/ [last accessed Sept. 5, 2013]

http://www.java.com/en/

Chapter 3
Related Work

This chapter will summarize findings of the related literature and it will shortly
discuss the paper Comparison of Techniques for Visualising Fire Behaviour by Black
et al. [6] which addresses the development of expert visualization techniques
for bushfires. The last section will eventually look at the currently available
visualizations for bushfires.

3.1 Important Aspects in the Related Literature

There are four types of literature related to this work: literature addressing
visualization in general, literature about dynamic spatio-temporal data, literature
about the visualization thereof as well as literature about the visualization of
natural hazards.
Currently, there is not much literature that is especially concerned with the
visualization of bushfires or wildfire behavior, but Black et al.’s paper falls into
this category. This is the reason why it is discussed in a little more detail in
the next section. The literature falling in the four categories mentioned above
provides some important aspects and some useful insights in how visualizations
work:

The Visualization - Pipeline

A very important concept is the so called visualization pipeline [7]. This pipeline
concept describes how visualizations are generated and which stages they pass.
Generally, all visualizations go through three main stages called

1. Acquisition

7

8 Chapter 3. Related Work

2. Transformation

3. Visualization

At first, the data underlying the visualization is assessed through measurements,
observations or in the case of bushfires through infrared scans conducted by
special planes overflighing bushfires in order to assess the perimeter and other
data 4. All this is done in the first stage: the acquisition phase.

After the acquisition, the acquired data is then input to the transformation stage.
Here, the relevant information that should be visualized is recovered. This typi-
cally means that the raw data coming from the acquisition stage is filtered and
transformed into appropriate data types and the relevant information is gained
through computations.
In current bushfire visualizations in apps and websites, this stage is barely exis-
tent. Typically, a fire marker is placed at the point of ignition or the raw data of
the perimeter is directly visualized without any transformation step that filters
information or gains the most relevant information for the user. Instead current
public visualizations use the "direct depiction" [8] of the fire data that is publicly
available, as the investigation at the end of this chapter shows.
As a common transformation stage, the concept of a pre-processing phase con-
ducting feature extraction is mentioned by Pang and the approaches introduced
here will use such pre-visualization processing to gain data that is relevant for
the user to answer particular questions. As Pang states, "good visualizations are
designed to answer particular questions" [7] which is especially true for the visu-
alization of natural hazards, as here, people using warn apps and websites are
typically interested in certain features of the fires like the position of the burning
frontier or the fire’s movement in the last hours. Thus, visualizations should
understandably illustrate them.

The result of the transformation stage is finally input to the visualization stage
that generates a graphical depiction of the transformed data. This visualization
is then shown to the user in order to communicate the desired information.

Categorization of dynamic spatio-temporal Data

A second important aspect for the visualization development is the categorization
of the data that is visualized.
When considering data describing the development of large bushfires, one is con-
cerned with two dimensions: the temporal dimension and the spatial dimension.
The temporal dimension refers to the fire’s development and change over time

4http://www.airaffairs.com.au/scanning_operations.html [last accessed Sept.
5, 2013]

http://www.airaffairs.com.au/scanning_operations.html

3.1. Important Aspects in the Related Literature 9

while the spatial dimension refers to the spatial extent, location and transforma-
tion of the fire. These types of data are therefore called dynamic spatio-temporal
data.
Spatio-temporal phenomena can be categorized as proposed by Connie Blok in
the paper "Monitoring Change: Characteristics of Dynamic Geo-spatial Phenomena
for Visual Exploration" [9] according to the types of changes that occur over time.
Here, changes are categorized as:

• Existential Changes (e.g. appearance and disappearance)

• Mutation (e.g. on the attribute level)

• Movement (e.g. movement along a trajectory or boundary shifts)

In this way, several important properties of a spatio-temporal phenomenon are
covered by this categorization. A bushfire for example would suddenly appear at
the location of ignition, in the following it would mutate with varying speed (on
the attribute level by changing heat or intensity of the fire) and it would perform
boundary shifts and movements in the environment. At the end, it would slowly
disappear again at locations different from the location of appearance.

Categorization of the User Type

After characterizing the type of the underlying data and phenomena, the type of
user is to be characterized. In the related literature concerned with the visualiza-
tion of natural hazards, four types of users are identified [7]:

• expert users

• policy makers, decision makers

• operational users

• casual users

Expert users are familiar with the data sets and they have a very good under-
standing of them. In the bushfire scenario, expert users are e.g. fire fighters
and scientists concerned with similar data sets. In contrast, policy makers and
decision makers, like e.g. the government, are people that are not directly familiar
with the data sets but need a good understanding of it in order to act appro-
priately. Operational users are people that are only familiar with a special and
limited set of visualizations and the group of casual users covers all people that
don’t have a strong technical knowledge of the data sets. They are not concerned
with visualizations thereof on an every-day basis and they use visualizations of
natural hazards for educational and informational purposes.
These four groups of people have different knowledge about the natural hazard’s

10 Chapter 3. Related Work

data and they all have different backgrounds. Thus, they all have different ques-
tions that can hardly be answered all by the same visualization. As a consequence,
one of Mr. Pang’s results is that "different stakeholders have different needs and uses
for such information. A "one-size-fits-all" approach in hazard visualization may therefore
not be the right approach." [7]. Expert users will need different visualizations than
the public and this thesis focuses on visualizations suitable for public applica-
tions.
But what is the public most interested in, regarding hazard visualization ? Ac-
cording to Pang, it is typically the own safety, the safety of loved ones, the threat
of own belongings and possible evacuation routes that can lead the users to safer
places. Consequently, visualizations suitable for the public should try to integrate
these aspects and they should aim to provide answers to related questions in
order to inform the public appropriately.

The Visualization Tradeoff

The fourth important aspect mentioned in the literature addresses the question,
in which way visualizations for expert users differ from visualizations for the
public.
As already mentioned, they will most likely answer different questions and
visualizations for expert users will typically provide a much higher level of detail
and more specialized data sets will be displayed. At this point, a very important
tradeoff steps in. It is the tradeoff completeness of data vs. comprehensibility of data [7]
[10] which says that the more data is visualized at a time, the less comprehensible
it generally becomes.
Since expert users are used to the concerned data sets, more information can be
shown simultaneously, maybe even the complete data set is depicted and their
expert knowledge will be required to decode the information that is encoded in
the visualization. The expert visualizations will be more on the "completeness
side" of this tradeoff than the public visualizations which will probably put more
emphasis on the comprehensibility of the visualization.

Visualization of Uncertainty

Moreover, there exists a fifth frequently mentioned issue: the visualization of
data with uncertainty.
In the general case, uncertainty affects the whole process in each stage: from
unreliable sensors in the acquisition phase, through uncertainty that comes with
predictions in the transformation phase to uncertainties that result from the
discreteness of the visual output. Some of these uncertainties, typically those
that can lead to significantly different final results, should be visualized in a
way that communicates this uncertainty. The papers "Understanding the Risk:
Establishing of an Interactive System for the Visualization and Exploration of Natural
Hazards and associated Uncertainties" [5] and "Visualizing Natural Hazard Data and

3.2. Expert - Visualizations by Black et al. 11

Uncertainties" [11] by Melanie Kunz and the paper "Visualizing Uncertainty in
Natural Hazards" [7] by Alex Pang address these issues and propose to use visual
variables like transparency, fuzziness, color, saturation, blurriness, geometric
objects, etc. to emphasize uncertainty in natural hazard visualizations.

3.2 Expert - Visualizations by Black et al.

The paper Comparison of Techniques for Visualising Fire Behaviour [6] by Black et
al. is closely related to this thesis’ topic since it discusses the development of
three expert - visualization techniques and their evaluation. The visualizations
developed in the paper focus on the user group of expert users and are designed
to visualize the output of fire behavior models like the McArthur Forest Fire Danger
Meter 5 and computer based simulations of bushfires.
The paper introduces the McArthur Forest Fire Danger Meter, a comparably easy
to use system to predict fire behavior used by many fire fighters and authorities
in Australia. It can make "predictions for a fire’s rate of spread, flame height, spotting
distance [...] and a value for the Fire Danger Index (FDI)." [6] based on input variables
like wind, temperature, slope, humidity, rainfall and fuel.
Besides this, nowadays several computer based simulation systems for bushfires
exist and most of these predictions need to visualize the results for expert users.
The authors state that "as the accuracy of input data used in the models is important,[...]
so too is the way the data are presented to the user" and introduce three visualization
approaches for bushfire simulation results:

Name Dimension Topographic Map Satellite Images
Topographic Map 2D 3 7

Elevation Model 3D 3 7

Elevation Model 3D 7 3

with Satellite Overlay

Table 3.1: The Visualizations developed by Black et al.

The first approach, the Digital Topographic Map is a 2D visualization of the area
using a topographic map and a street-overlay. Here, the fire’s development is
shown by rendering the fire’s perimeter at specific moments in time and by
showing an animation of the perimeter’s movement over 5 hours.
The second approach is the Digital Elevation Model offering a 3D view on the area.
Here, an abstract model of the local topography was generated and textured with
a topographic map and the street-overlay used in the first visualization.
To generate an even more realistic visualization of the fire and its environment,
the Digital Elevation Model with Satellite Overlay uses the same 3D model of the
terrain as the second visualization, but this time textures it with satellite images

5http://royalcommission.vic.gov.au/Documents/Document-files/Exhibits/
WIT-004-001-0315.pdf [last accessed Sept. 5, 2013]

http://royalcommission.vic.gov.au/Documents/Document-files/Exhibits/WIT-004-001-0315.pdf
http://royalcommission.vic.gov.au/Documents/Document-files/Exhibits/WIT-004-001-0315.pdf

12 Chapter 3. Related Work

and the street-overlay.
In all three visualizations, the fire and its perimeter are rendered as an orange
area in the scene.

All three approaches are eventually evaluated by the authors in a user-study. For
this, several expert users from the Victoria Department of Sustainability and En-
vironment were invited to use a prototype implementation of the visualizations
to perform several tasks. The prototype implementation displayed the GUI of
an expert system and a window showing the scene with the tested visualization.
Finally, the users should outline the strengths and weaknesses of each visualiza-
tion approach.

Their results showed, that the 2D approach was preferred by many users for
identifying the fire’s spread and perimeter. It is a suitable approach for fire-
managers familiar with the local area. The 3D view provided a good impression
of the topography in the area which is especially important for fire-fighters not
familiar with the area, but the perimeter and its movement were harder to spot.
In addition, the last visualization informed about the vegetation and allowed to
spot farmlands and other features of the area due to the satellite images used.

But the paper’s results also show, that there is not a perfect visualization approach;
it always depends on the users and their needs. Each visualization increased the
knowledge about the situation. In an expert system, it would probably be best to
offer a range of different visualizations and to allow switching between them.

Similar to Black et al.’s paper, this thesis will introduce and evaluate 7 visualiza-
tion approaches in the 2D domain specifically designed for the group of casual
users.

Figure 3.1: The three visualizations developed by Black et al. 6

6pictures taken from [6]

3.3. Current Bushfire Visualizations 13

3.3 Current Bushfire Visualizations

3.3.1 Public Visualizations

As briefly outlined in the Motivation section, public visualizations of bushfires
can be found in bushfire warn applications for mobile devices and bushfire warn
websites that use widespread map services like Google Maps or OpenStreetMap
to visualize the fires on a map. Several of these apps and websites emerged in
the last years, some of them are limited to specific locations and regions while
others work globally.

Visualization in Apps

When investigating the currently available apps for bushfire prone regions around
the world, it is noticeable that virtually all use the same way to show the fires
on the map: they display one simple, static and iconic fire marker per fire at its
location of ignition.
The advantage of such a simple visualization is, that it is easy to implement and
intuitive to interpret for laypersons. But it can be questioned in terms of accuracy,
especially when fires cover huge areas. In those cases, showing the location of
ignition can make people underestimate the danger originating from the fire and
even lull users into a false sense of security when fire frontlines are already far
away from the original ignition point. In these situations, it would be good, if
visualizations would adapt to the user’s location and the fire’s behavior. But up
to now, this is not the case in mobile bushfire warn apps.

Figure 3.2: NSW Fires Near Me App (left) and TexasFires App (right) 7

14 Chapter 3. Related Work

Considering the data available for mobile apps in smartphones or tablets, many
improvements are possible. Typically, the online fire-data provided by the au-
thorities consist of the current perimeter data and the point of ignition as well as
some numerical data like burned area or status of the fire (going, controlled, etc.).
Moreover, this data is updated in a regular fashion and thus, information about
the spatio-temporal development of the fire is available, but currently not used
in public visualizations.
Additionally, information that is not directly related to the fire can be used to
augment the visualization and to personalize it. It would for example be ade-
quate to integrate the user position in the visualization, either by visualizing the
position of the user in different ways or by integrating information about the
user’s position into the transformation stage of the visualization that is used.
And it is not only the available GPS-data that suits for the usage in the transfor-
mation stage. Even street-data could be used, extrapolations of the fire behavior
could be made or animations and other spatio-temporal visualization techniques
could communicate much more valuable information about the fire’s spread.

Used in Transformation Stage Apps
Ignition Point 3

Perimeter Data 7

User Position 7

Spatio-Temporal Development 7

Extrapolation 7

Street Data 7

Animation 7

Table 3.2: Current App - Visualizations

Visualization in Websites

Similar to bushfire warn apps, bushfire warn websites provide lists with current
incidents and an online map showing the ongoing fires and planned burns. They
typically provide less special features, most of them just display the bushfires on
the map.
When investigating the visualizations used online, one will mainly see two ap-
proaches:
The vast majority of websites implements exactly the same visualization tech-
nique as corresponding apps do and place a single, static and iconic fire marker
on the map at the location of ignition.
The rest implements a somewhat more informative visualization that renders the

7left: https://itunes.apple.com/de/app/fires-near-me-nsw/id370891827?
mt=8 [last accessed Sept. 5, 2013]
right: https://itunes.apple.com/us/app/texas-fires/id426341846?mt=8 [last
accessed Sept. 5, 2013]

https://itunes.apple.com/de/app/fires-near-me-nsw/id370891827?mt=8
https://itunes.apple.com/de/app/fires-near-me-nsw/id370891827?mt=8
https://itunes.apple.com/us/app/texas-fires/id426341846?mt=8

3.3. Current Bushfire Visualizations 15

available fire perimeter on the map. This means, the data provided by the author-
ities is displayed as a polygon showing the burned area. When the perimeter is
updated, the old perimeter configuration is removed by the updated one.
But again, no real transformation takes place, the approach that is used in web-
sites is more a "direct depiction" [8] of the raw data provided by the authorities
and no spatio-temporal information about the fire’s development or its dynamic
is communicated, no street data is used, no animations are implemented and no
personalized visualization (using the user’s location) is currently available.

Used in Transformation Stage Apps Websites
Ignition Point 3 3

Perimeter Data 7 (3)
User Position 7 7

Spatio-Temporal Development 7 7

Extrapolation 7 7

Street Data 7 7

Animation 7 7

Table 3.3: Current Website - Visualizations

Figure 3.3: Google Crisis Map Screenshot (left) and Queensland Rural Fire Service
Website Screenshot (right)9

9left: http://google.org/crisismap/2013-nsw-bushfires [last accessed Sept. 5,
2013]
right: http://www.ruralfire.qld.gov.au/map.html [last accessed Sept. 5, 2013]

http://google.org/crisismap/2013-nsw-bushfires
http://www.ruralfire.qld.gov.au/map.html

16 Chapter 3. Related Work

3.3.2 Expert Visualizations

On the other side of the tradeoff between completeness and comprehensibil-
ity mentioned in the Related Work (3.1) section lies the expert visualization.
These visualizations are targeting the group of experts and professionals like
fire-managers and scientists that work with bushfire data on an every-day basis.
As described in the previous section, expert visualizations generally commu-
nicate the results of complex bushfire simulations or other measured data sets.
They are designed to deliver highly specialized information about flame height,
smoke, fuel, fire intensity, heat spread and many other attributes in a way, that
professionals can work with.
Expert visualizations consequently contain very much information about the fire;
but this information is encoded in the visualization. The knowledge of an expert
is required to properly understand the visualized data sets and generally, this
interpretation is hardly possible or even impossible for laypersons.
Despite the fact that these visualizations and data sets are most often not avail-
able to the public, the visualizations itself are generally too complex and not
intuitive understandable for casual users and thus not suitable for a public warn-
application.

Figure 3.4: Scientific Visualization from [12] and Visualization from the FireDST
Tool11

3.3.3 Conclusion

Summarizing one can say, that currently two types of visualizations exist: the
complex expert visualizations that focus on the completeness part of the complete-
ness vs. comprehensibility tradeoff and the public visualizations used in apps and
websites that put emphasis on the comprehensibility while loosing accuracy and
informative content.

The comparison shows that there is a "gap" between both approaches. To fill
this "gap", new alternative visualizations for the public are developed in the

11picture taken from http://www.bushfirecrc.com/sites/default/files/
managed/resource/fire_note_109_high_res.pdf [last accessed Sept. 5, 2013]

http://www.bushfirecrc.com/sites/default/files/managed/resource/fire_note_109_high_res.pdf
http://www.bushfirecrc.com/sites/default/files/managed/resource/fire_note_109_high_res.pdf

3.3. Current Bushfire Visualizations 17

Public Apps and Websites Expert Systems
Pro simple precise

intuitive for laypersons much information
Con imprecise complex

little information unintuitive for laypersons
not available to the public

Table 3.4: Current Visualizations - Summary

following chapter. These trade off comprehensibility and completeness in a
way, that allows laypersons to gain more relevant information than offered by
current public visualizations while being less complex than expert approaches.
In addition to that, the new visualizations will include more information into the
transformation stage than current public apps and websites do, in order to offer
information that really matters for people endangered by bushfires.

18 Chapter 3. Related Work

Chapter 4
Concepts - The Visualization

Algorithms

This chapter outlines the developed visualizations and algorithms. At first, a
brief overview is given followed by a more detailed description of each algorithm
and the pseudocodes.

4.1 Overview

"There are a number of different options available to view spatial information and
selecting the right one or combination is essential for effective communication."

- Black et al. [6]

For this thesis, 7 visualization approaches for communicating information about
ongoing bushfires were developed as well as the core algorithms computing the
relevant information from the data available in apps and websites.
Following the concept mentioned in Pang’s paper [7], all visualizations are de-
signed to answer different important questions that people located in bushfire
regions are confronted with.
For this, they generally use a pre-visualization stage (or transformation stage),
in which they extract relevant features from the available data sets like special
points of interest, the fire frontline, information about the development, spread
and so on.
All in all, they aim to be alternatives for visualizations in warn apps and websites
by trading off completeness of data and comprehensibility as described in the
Conclusion (3.3.3) section of the previous chapter.
To be able to communicate more information while staying intuitive and inter-

19

20 Chapter 4. Concepts - The Visualization Algorithms

pretable for laypersons, the approaches range from simple marker placements to
more complex visualizations using colored streets, arrows, curves and areas.
The following table shows all new approaches compared to the current ones:
Abbreviations for the Algorithms:
NP = Nearest Point; ND = Nearest Point Development; FF = Fire Frontline;
FFD = Fire Frontline Development; SP = Spread; DZ = Danger Zone

Using Apps Web NP FF ND FFD SP DZ Street
Ignition Point 3 3 7 7 7 7 3 7 7

Perimeter Data 7 (3) 3 3 3 3 3 3 3

User Position 7 7 3 3 3 3 7 7 3

Spatio-Temp. Dev. 7 7 7 7 3 3 3 3 7

Extrapolation 7 7 7 7 7 7 7 3 7

Street Data 7 7 7 7 7 7 7 7 3

Animation 7 7 7 7 3 3 7 7 7

Table 4.1: Comparison of all Visualizations

The Fire - Geometry - Data

As defined in the Goals (2), the algorithms work with the bushfire data sets that
are publicly available.
These data sets consist of a list of fires which is regularly updated via RSS feeds12.
In these data sets, each fire itself consists of the point of ignition and a perimeter
which is made up of a number of geo-referenced polygons edging the burning and
burned areas.
To get the fire’s development over time, an app or a website could save all
incoming updates to maintain a list of perimeters per fire, each representing the
fire at a different moment in time. By doing this, a set of discrete sample points
in the temporal dimension exists, with which a visualization of spatio-temporal
features becomes possible.

Figure 4.1: The Fire - Geometry - Data

12e.g. the Fire RSS feed by the CFA in Victoria: http://www.cfa.vic.gov.au/rss-feeds/
[last accessed Sept. 5, 2013] or the NSW Rural Fire Service: http://www.rfs.nsw.gov.au/
dsp_content.cfm?cat_id=1358 [last accessed Sept. 5, 2013]

http://www.cfa.vic.gov.au/rss-feeds/
http://www.rfs.nsw.gov.au/dsp_content.cfm?cat_id=1358
http://www.rfs.nsw.gov.au/dsp_content.cfm?cat_id=1358

4.2. Nearest Point Algorithm 21

4.2 Nearest Point Algorithm

4.2.1 Motivation

The Nearest Point Algorithm is the first and the simplest new approach and falls
into the category of typical marker-placement algorithms.
In contrast to the current placement at the point of ignition, which, as already
outlined, is not a good representative of a bushfire, this algorithm aims to com-
pute a marker-position that communicates valuable information to the user. For
doing this, the algorithm takes into account the user’s coordinates and the most
up-to-date perimeter data of a fire to answer the question : "How close is the fire to
the user ?".

4.2.2 Algorithm

The perimeter data of a fire typically consist of multiple geo-referenced polygons
as described in 4.1. If we now think of the algorithm’s task in terms of 2D-
geometry, the goal is to compute the point m on the polygons’ outline, that
has the minimal distance to the point u, representing the location of the user.
This means, that the algorithm’s main task is to solve the nearest point problem
"polygon - point"
The algorithm computes this closest point m by considering the closest point to
u on each of the polygons’ line-segments connecting two adjacent vertices of a
polygon. While iterating over all line segments of all polygons, the algorithm
always saves the point that is closest to u in the variable nearest. This is a loop
invariant that ensures that the algorithm delivers the correct result since at the
end, all line-segments of the perimeter are visited and the point saved in the
variable nearest is returned.
To compute the nearest point on a line-segment, some vector calculations are
used. When considering the line-segment connecting the points pi and pi+1, the
algorithm firstly constructs the connection-vector ~c = pi+1 − pi and the vector
~s = u− pi going from the first vertex pi to the user’s position u. After that, the
vector ~s is projected orthogonally onto ~c using the dot product ~c · ~s. According to
the dot product’s definition,

~c · ~s = |~c||~s| cosα (4.1)

where α denotes the angle between the two vectors ~c and ~s, we can get the signed
length l of the projection of ~s on ~c by

l = |~s| cosα =
|~c||~s| cosα
|~c|

=
~c · ~s
|~c|

(4.2)

To easily get an information about where the projection of point u on the line
going through pi and pi+1 is located (relative to the part between pi and pi+1) the

22 Chapter 4. Concepts - The Visualization Algorithms

algorithm considers the value

t =
l

|~c|
=
~c · ~s
|~c|2

(4.3)

Now we can distinguish three cases:

1. t ≤ 0. In this case, the projection of u on the line is not between pi and pi+1

and so, pi is the closest point on the segment to u.

2. 0 < t < 1. In this case, the projection of u on the line is between pi and pi+1

and consequently the closest point to u on the segment is pi + t ∗~c since the
closest point on a line to a point is the orthogonal projection of the point on
the line.

3. 1 ≤ t. In this case, the projection of u on the line is not between pi and pi+1

and pi+1 is the closest point on the segment to u.

This closest point is then compared to the closest point of all line-segments
considered before (nearest) to check, whether it is closer to u than nearest. If this
is the case, nearest is overwritten. Finally, the algorithm returns a pair consisting
of the closest point found and the distance from u to this point.
In addition, the algorithm uses the so called orthodromic distance13 [13] when
checking distances to respect the earth’s round shape.

4.2.3 Pseudocode

See Algorithm 1.

4.2.4 Comments

This simple to compute and intuitive to understand placement enables the user
to make decisions based on the marker placed on the map, because assuming the
perimeters are updated in an appropriate frequency, the user can be sure, that
there is no point closer than the marked one, that is threatening him.
In addition to showing the marker on the map, it might be a good idea to add
information about the total distance. The study by Black et al. found, that
"both the numerical data and visualization graphics should be available" because it can
"complement the visual output and [the user can] gain a better understanding of the fire
situation." [6]. Following this advice, one could add a text-note with the distance
returned by the algorithm to the marker in order to make assessing the spatial
relationship easier for the user.
In all following examples, the fire’s perimeter is represented by the blue polygons
and the user’s position is indicated by the blue circle.

13The orthodromic distance is the shortest distance between two points on the surface of a sphere.
Using a sphere with radius 6378 km approximates the distance of two points on the earth’s surface

4.2. Nearest Point Algorithm 23

Algorithm 1 Nearest Point Algorithm
Input: u = the user’s location

perimeter = the fire’s current perimeter
Output: Pair with nearest point to u on perimeter and corresponding distance d

1: nearest = null; current = null;minDist =∞; currentDist =∞;
2: for all polygons polygon in perimeter.polygons do
3: n = number of vertices in polygon
4: for i = 0→ n− 1 do
5: c = polygon.vertices[(i+ 1)%n]− polygon.vertices[i]
6: s = u− polygon.vertices[i]
7: t = c·s

|c|2

8: if t ≤ 0 then
9: current = polygon.vertices[i]

10: else if 0 < t < 1 then
11: current = polygon.vertices[i] + t ∗ c
12: else
13: current = polygon.vertices[(i+ 1)%n]
14: end if
15: currentDist = orthodromicDist(u, current);
16: if currentDist < minDist then
17: minDist = currentDist;
18: nearest = current;
19: end if
20: end for
21: end for
22: return Pair(nearest,minDist)

Figure 4.2: Example - Nearest Point Visualization

24 Chapter 4. Concepts - The Visualization Algorithms

4.3 Fire Frontline Algorithm

4.3.1 Motivation

As mentioned in the literature concerning the visualization of natural hazards,
the casual users are most concerned about their own and their family’s safety [7].
This leads to the next question: "What part of the bushfire threatens the user ?".
Since large bushfires are spreading in different directions with different velocities
and burn intensively at the progressing frontline, the important part of such a
fire is the actual fire-front that faces the user’s position and moves towards him.
Thus, the second algorithm is designed to approximate the fire-frontline facing
and threatening the user. To visualize this approximation, it uses a method that
goes further than just a marker placement and that is more spatial: an intuitive
to interpret curve enabling the user to identify this relevant part of the fire.
The Fire Frontline Algorithm’s input is the most up-to-date perimeter of a fire and
the user’s coordinates as well as a parameter maxPoints defining the length of
the approximated frontline.

4.3.2 Algorithm

radius

left hull-iteration

right hull-iteration

user

hull

approx. fire frontline

perimeter

Figure 4.3: Sketch of the
Fire Frontline Algorithm

The algorithm approximates the relevant fire-front by
computing an ordered list of geo-referenced control
points that define the approximation. These control
points are then passed to an implementation of a curve-
visualization, for example a Catmull-Rom-Spline [14] as
used in the prototype implementation, which smoothly
connects all ordered control points from the beginning
to the end. This smoothed curve through all control
points is then an approximation of the fire-frontline
and can be rendered on the map.
The most interesting part of this visualization approach
is the computation of the relevant control points. For
this, the algorithm uses a hull of the fire’s current perimeter, gained for exam-
ple through the application of the Graham-Scan-Algorithm [15]. This algorithm
computes the convex hull of the perimeter which is then saved in the perimeter
object.
After computing the hull, the algorithm calls the Nearest Point Algorithm once to
get the closest point on the perimeter to the user. This is the first control point and
added to a list. After that, the algorithm starts iterating in over the hull’s vertices
to the left as well as to the right to find the next control points on the hull. Each
two subsequent control points must have a minimum distance of radius. The
while-loop eventually terminates when the iteration to the left and to the right
"meet" on the other side of the hull or when maxPoints many control points are
found on the left and on the right side respectively. The while-loops at the very

4.3. Fire Frontline Algorithm 25

end ensure, for consistency, that all returned lists have length 2 ∗maxPoints+ 1.
The result of the algorithm after completion of all loops is the controlPoints list
defining the curve.

4.3.3 Pseudocode

Algorithm 2 depicts the function computeNearestIndex used by the Fire Frontline
Algorithm and Algorithm 3 shows the pseudo-code of the algorithm itself.

Algorithm 2 computeNearestIndex
Input: u = the user’s location

perimeter = the fire’s current perimeter
Output: index of the vertex in the perimeter’s hull with minimum distance to u

1: dist =∞
2: startIndex = 0
3: for i = 0→ n− 1 do
4: vertex = perimeter.convexHull.vertices[i]
5: if ((currentDist = orthodromicDist(vertex, u)) < dist) then
6: dist = currentDist
7: startIndex = i
8: end if
9: end for

10: return startIndex

4.3.4 Comments

Figure 4.4: Example - Fire Frontline
Visualization

It is a widespread concept to color visual-
izations of natural hazards according to the
phenomena represented by them. In their
paper, Kunz et al. for example used the
colors gray, blue and purple to visualize
snow avalanche parameters because these
"cold colors [are] reflecting the characteristics
of snow" [11]. Consequently it is certainly a
good idea to use hot colors like red, orange
and yellow to color the fire-frontline and to
intuitively give a "fire" and "danger" feel-
ing to it. Furthermore, the nearest control
point can be marked by a big fire-marker
and each other control point by a small one.
When implemented in an app or website,
it is not necessary to display the current perimeter’s polygons on the map when
using this visualization approach. Just rendering the fire front should suffice to
answer the question "What part of the bushfire threatens the user ?".

26 Chapter 4. Concepts - The Visualization Algorithms

Algorithm 3 Fire Frontline Algorithm
Input: u = the user’s location

perimeter = the fire’s current perimeter
maxPoints = the maximum number of control points per direction

Output: a list with 2 ∗ maxPoints + 1 controlpoints for a curve approximating the
frontline

1: controlPoints = empty list of locations; lPoints = 0; rPoints = 0;
2: n = perimeter.convexHull.vertices.size()
3: realNearestPoint = NearestPointAlgorithm(u, perimeter).first
4: controlPoints.add(realNearestPoint)
5: lastL = realNearestPoint; lastR = realNearestPoint
6: radius = computeAppropriateRadius(realNearestpoint, u)
7: nearestIndex = computeNearestIndex(u, perimeter)
8: indexL = (nearestIndex− 1 ≥ 0)?nearestIndex− 1 : n− 1
9: indexR = (nearestIndex+ 1)%n

10:
11: while indexR 6= indexL do
12: vertexL = perimeter.convexHull.vertices[indexL]
13: vertexR = perimeter.convexHull.vertices[indexR]
14: if rPoints < maxPoints

and orthodromicDist(vertexR, lastR) ≥ radius then
15: controlPoints.addLast(vertexR)
16: lastR = vertexR
17: rPoints++
18: end if
19: if lPoints < maxPoints

and orthodromicDist(vertexL, lastL) ≥ radius then
20: controlPoints.addF irst(vertexL)
21: lastL = vertexL
22: lPoints++
23: end if
24: if lPoints == maxPoints and rPoints == maxPoints then
25: break
26: end if
27: indexR = (indexR+ 1)%n
28: if indexR == indexL then
29: break
30: end if
31: indexL = (indexL− 1 ≥ 0)?indexL− 1 : n− 1
32: end while
33:
34: while lPoints < maxPoints do
35: controlPoints.addF irst(lastL)
36: lPoints++
37: end while
38: while rPoints < maxPoints do
39: controlPoints.addLast(lastR)
40: rPoints++
41: end while
42: return controlPoints

4.4. Nearest Point Development Algorithm 27

4.4 Nearest Point Development Algorithm

4.4.1 Motivation

The Nearest Point Algorithm and the Fire Frontline Algorithm as described so far
both use the most up-to-date perimeter data available in the application to stat-
ically visualize the current situation. But they don’t provide any information
about the temporal development and the spread dynamic of the fire. The follow-
ing two algorithms are extending the nearest point and the fire frontline approach
by adding the temporal dimension to the visualization. They do so by providing
a static way to visualize the fire’s spatio-temporal development towards the user,
as well as an animated way, showing an approximation of the development in
the last hours.
In this sense, the Nearest Point Development Algorithm answers the question : "How
did the fire develop towards the user’s location ?". The inputs are the fire’s chrono-
logically ordered list of all known perimeters in the past, the user’s coordinates
and some parameters defining the smoothness of the animation (iFrames), the
amount of samples used in the algorithm (timeSteps) and the sampling frequency
(timeInterval).

4.4.2 Algorithm

The Nearest Point Development Algorithm is based on a commonly used technique
to deal with temporal data: sampling in the temporal dimension [8]. Concretely,
the algorithm chooses the current perimeter and some perimeters at discrete
moments in the past and applies the Nearest Point Algorithm to them. The result-
ing locations are then statically or dynamically visualized. For the prototype
implementation, two versions of the algorithm were implemented:

(1) The first algorithm implements a static visualization of the development. The
algorithm computes the chronologically ordered list of nearest points and
places a marker at each location. Markers representing locations in the past
are increasingly transparent and each two subsequent markers are connected
by an arrow. The resulting visualization provides information about the
current location of the nearest point and about the development of the fire,
especially the spreading speed (when taking the time-span between two
subsequent markers and the map’s scale into account) in the user’s direction.

(2) The second algorithm generates a frame-by-frame animation of the develop-
ment. For this, the algorithm also applies the Nearest Point Algorithm multiple
times in order to get the results at some discrete moments in time. Unfor-
tunately, the perimeter-updates are typically not as frequent as necessary
for giving the impression of a fluent movement when showing them frame
by frame in an animation. Thus, the algorithm interpolates between two

28 Chapter 4. Concepts - The Visualization Algorithms

subsequent moments in time to generate more frames filling the "gaps" be-
tween distant marker positions. The interpolation fineness is controlled by
the parameter iFrames defining the number of frames computed between
two successive steps in the temporal development. The resulting frames are
then ordered chronologically and can be rendered consecutively with the
desired animation speed. The result shows the movement of the nearest point
towards the user in the last hours and gives an impression of the fire’s speed
in the user’s direction. To emphasize the current location of the fire, the last
frame (showing the current nearest point) is to be rendered for a longer time
span. This makes it easier for the user to understand the development and to
recognize the current situation.

4.4.3 Pseudocode

Algorithm 4 depicts the static version, Algorithm 5 shows the animated version
and Algorithm 6 is used by the latter for interpolation.

Algorithm 4 Nearest Point Development Algorithm (static)
Input: u = the user’s location

fire = the fire-data containing the chronological list of all perimeters
timeInterval = time interval between two temporal sampling points in hours
timeSteps = number of sampling steps

Output: chronologically ordered list of marker positions,
two successive markers should be connected by an arrow
markers in the past should be increasingly transparent

1: list = empty list
2: for i = timeSteps→ 0 do
3: perimeter = getPerimeterXHoursAgo(fire, i ∗ timeInterval)
4: nearest = NearestPointAlgorithm(u, perimeter).first
5: list.add(nearest)
6: end for
7: return list

4.4.4 Comments

Bringing the temporal dimension to the visualization of bushfires is a very im-
portant aspect. Two ways to do this are outlined here, both using simple marker
placements, once in conjunction with connecting arrows emphasizing the devel-
opment over time and once animated. To make the visualization more compre-
hensible, the corresponding timestamps should be rendered next to the markers
and the key of the map should indicate, which time-span is represented by an ar-
row. In the animated version, an information about which time-span is animated
(e.g. last 5 hours) should be given.

4.4. Nearest Point Development Algorithm 29

Algorithm 5 Nearest Point Development Algorithm (animated)
Input: u = the user’s location

fire = the fire-data containing the chronological list of all perimeters
timeInterval = time interval between two temporal sampling points in hours
timeSteps = number of sampling steps
iFrames = the number of interpolation frames between two sampling steps

Output: an animation consisting of (iFrames+1) ∗ timeSteps+1 many frames
showing the nearest point’s development over time

1: frameList = empty list
2: for i = timeSteps→ 0 do
3: perimeter = getPerimeterXHoursAgo(fire, i ∗ timeInterval)
4: nearest = NearestPointAlgorithm(u, perimeter).first
5: if i < timeSteps then
6: from = frameList.getLastMarkerPosition()
7: to = nearest
8: for t = 1→ iFrames do
9: iPos = interpolateLocation(from, to, t

iFrames+1)
10: frameList.add(MarkerV isualizationOf(iPos))
11: end for
12: end if
13: frameList.add(MarkerV isualizationOf(nearest))
14: end for
15: animation = new frame by frame animation with frame-sequence frameList

16: return animation

Algorithm 6 interpolateLocation
Input: from = start location

to = end location
timeFraction = fraction of the way between,
generally 0 ≤ timeFraction ≤ 1

Output: the interpolated location between from and to
1: c = to− from
2: interpolation = from+ timeFraction ∗ c
3: return interpolation

Figure 4.5: Example - Nearest Point Development Visualization

30 Chapter 4. Concepts - The Visualization Algorithms

4.5 Fire Frontline Development Algorithm

4.5.1 Motivation

The underlying idea for the Fire Frontline Development Algorithm is the same as in
the Nearest Point Development Algorithm: adding the temporal dimension to the
visualization. This time, the spatio-temporal development of the fire frontline
facing the user is visualized. Again, a static visualization with connecting arrows
as well as an animation are suitable and both are described in the pseudocode
beneath.
Here, the inputs are the same as in the Nearest Point Development Algorithm. The
question that is answered by the visualization is "How did the relevant fire frontline
move towards the user ?".

4.5.2 Algorithm

The fire frontline equivalent to the Nearest Point Development Algorithm works
very similar to its marker-placement counterpart. The algorithm’s parameters
are the same as in the Nearest Point Development Algorithm except that one further
parameter maxPoints, known from the Fire Frontline Algorithm, is added. Again,
two visualizations exist:

1. The visualization in the static version renders chronologically ordered fire
frontlines, where old frontlines are rendered transparent and two subse-
quent frontlines are connected by an arrow going from one nearest point to
the nearest point in the next time step.
The most important difference to the Nearest Point Development Algorithm is,
that the algorithm is concerned with multiple positions at each time step.
These positions represent the frontline’s control points at a specific moment
in time.
To handle this, the static algorithm returns a list of lists. Each of those lists
contains the frontline’s control points at the respective time step. When for
example accessing the returned list at [timeSteps][0], the leftmost control
point of the most up-to-date fire-frontline is returned.

2. The animated version of this approach is a frame by frame animation
showing the movement of the fire-frontline towards the user. Here, the same
problem as in the Nearest Point Development Algorithm occurs: The perimeter
update intervals are usually too big to give the impression of a fluent
movement, especially when the fire frontline progressed fast towards the
user. In this case, the interpolation approach works as well. The algorithm
computes new control points by interpolating between two control points
in two subsequent frontlines. This is done with a further for-loop in line
10 of the pseudocode. Here, the fact that all control point lists returned

4.5. Fire Frontline Development Algorithm 31

by the Fire Frontline Algorithm called in line 4 have the same length of
2 ∗maxPoints+ 1 comes in handy. It ensures, that each control point has
an "interpolation partner" in the next time step’s frontline. Eventually, the
last frame containing the current frontline should be displayed for a longer
time-span to emphasize the current situation.

4.5.3 Pseudocode

Algorithm 7 Fire Frontline Development Algorithm (static)
Input: u = the user’s location

fire = the fire-data containing the chronological list of all perimeters
maxPoints = the maximum number of control points per direction
timeInterval = time interval between two temporal sampling points in hours
timeSteps = number of sampling steps

Output: chronologically ordered list of control point lists defining the fire front-
lines

1: list = empty list
2: for i = timeSteps→ 0 do
3: perimeter = getPerimeterXHoursAgo(fire, i ∗ timeInterval)
4: controlPoints = FireFrontlineAlgorithm(u, perimeter,maxPoints)
5: list.add(controlPoints)
6: end for
7: return list

4.5.4 Comments

Figure 4.6: Example - Fire Frontline Develop-
ment Visualization

Analogue to the Nearest Point De-
velopment Algorithm, the corre-
sponding timestamps should be
visualized, the time-span an ar-
row represents should be commu-
nicated and the time-span the an-
imation displays should be noted
for the viewer.
Especially for publicly available
visualizations of natural hazards
like bushfires, it is, as Kunz et
al. states, very important that the
"underlying data [is] presented to de-
cision makers in an understandable
and interpretable way." [5]. That is
why an application implementing
any of the introduced visualiza-

32 Chapter 4. Concepts - The Visualization Algorithms

Algorithm 8 Fire Frontline Development Algorithm (animated)
Input: u = the user’s location

fire = the fire-data containing the chronological list of all perimeters
maxPoints = the maximum number of control points per direction
timeInterval = time interval between two temporal sampling points in hours
timeSteps = number of sampling steps
iFrames = the number of interpolation frames between two sampling steps

Output: an animation consisting of (iFrames+1) ∗ timeSteps+1 many frames
showing the frontline’s development over time

1: frameList = empty list
2: for i = timeSteps→ 0 do
3: perimeter = getPerimeterXHoursAgo(fire, i ∗ timeInterval)
4: controlPoints = FireFrontlineAlgorithm(u, perimeter,maxPoints)
5: if i < timeSteps then
6: fromPoints = frameList.getLastControlPoints()
7: toPoints = controlPoints
8: for t = 1→ iFrames do
9: iPoints = empty list

10: for j = 0→ maxPoints− 1 do
11: iCP = interpolateLocation(fromPoints[j], toPoints[j], t

iFrames+1)

12: iPoints.add(iCP)
13: end for
14: frameList.add(Curve− V isualization(iPoints))
15: end for
16: end if
17: frameList.add(Curve− V isualization(controlPoints))
18: end for
19: animation = new frame by frame animation with frame-sequence frameList

20: return animation

tions should attach importance to additionally displaying an understandable and
appropriate key.
As a result, perceiving the movement with this visualization through arrows
and corresponding timestamps or even animations communicates much more
information relevant for the process of decision making than visualizations that
do not include the temporal development.

4.6. Spread Algorithm 33

4.6 Spread Algorithm

4.6.1 Motivation

The Spread Algorithm is designed to improve the perimeter visualization used
in some websites by providing not only a spatial visualization of the current
fire status but by providing a spatio-temporal visualization. The user should
receive an impression of how the bushfire came to its current form. This is done
by adding the temporal dimension to the perimeter depiction in form of arrows
with variable length and thickness. Concretely, a bundle of arrows starting
at the fire’s point of ignition provide information about the fire’s dynamic by
indicating the total extent of the fire’s progress (measured from the point of igni-
tion on) and its average spread speed during the last hours in different directions .
The motivation for the visualization design itself comes from the classical "compass-
rose" 14. Moreover, the visualization is independent from the user’s position and
can thus be used in devices or applications that do not have access to the user’s
coordinates.
The question concerned by this algorithm is consequently: "How did the fire
spread?" and the input for the algorithm is the fire’s chronologically ordered list
of perimeters and its point of ignition as well as the number of arrows used (num)
and the time-span in the past that is taken into account (h hours) for computing
the average spread speed.

4.6.2 Algorithm

ray

interPast

interNow

perimeter now

perimeter past

progression
distance

ignition

Figure 4.7: Sketch of the 2D Ray-Casting

The Spread Algorithm uses a 2D ray-
casting approach to compute the rel-
evant information. The parameter
num defining the number of arrows
also defines the amount of rays that
are generated and shot. The di-
rections are computed by dividing
all four cardinal directions by the
amount of rays shot, so that each ray
has an rad-angle of 2π

num to the adja-
cent ones.
After a ray is generated, it is then
shot from the point of ignition to the
computed direction and the last inter-
section point with the perimeter that
was up-to-date h hours ago is deter-
mined (interPast) as well as the last
intersection point with the current perimeter (interNow). For the ray-casting,

14http://en.wikipedia.org/wiki/Compass_rose [last accessed Sept. 5, 2013]

http://en.wikipedia.org/wiki/Compass_rose

34 Chapter 4. Concepts - The Visualization Algorithms

a method shootPerimeter is called, delegating the intersection-computation to
all its polygons by using a method shootPolygon. This method then tests for
intersection with each of the polygon’s line-segments by using standard 2D-
ray-casting algorithms like the fast 2D version of the line-segment intersection
computation by Goldman15 [16]. If a ray does not hit the perimeter, e.g. because
the perimeter is not closed, the intersection with the convex hull is computed
instead.
As a result, the fire’s extent (in the ray’s direction) in the past and in the present
is given by the intersection points. This already defines the length of the arrow,
which goes from the point of ignition to the last intersection with the current
perimeter. The thickness of the arrow is computed in the following by using a
function of the average spread speed in the ray’s direction in the last h hours.
This speed can be approximated by the distance the fire progressed in the ray’s
direction divided by the time it took the fire to progress. Consequently, the
average spread speed in the direction of ray i during the last h hours is

vi =
orthodromicDist(interPasti, interNowi)

h
(4.4)

This speed is then mapped to an appropriate thickness for the arrow where fast
progress is mapped to thick arrows and slow progress to thin ones.
The final result of the algorithm is then the list of all arrows.

4.6.3 Pseudocode

Algorithm 10 depicts the main Spread Algorithm using Algorithm 9 and Algo-
rithm 11 for the ray-casting. Algorithm 12 is a standard 2D ray-casting algorithm
by Goldman [16] used for the intersection computation between the ray and a
line segment.

Algorithm 9 shootPerimeter
Input: origin = the point where the ray starts

dir = the ray’s direction
perimeter = the perimeter

Output: the point where the ray intersects the perimeter (with max. distance to
origin)

1: intersections = empty list
2: for all Polygon poly in perimeter.allPolygons do
3: intersections.add(shootPolygon(origin, dir, poly))
4: end for
5: return getMostDistantPoint(origin, intersections)16

15the pseudocode thereof is depict in Algorithm 12. Here, the 2D vector cross-product is defined
as: a× b = ax ∗ by − ay ∗ bx

16The function getMostDistantPoint straightforwardly determines the point within a set of
intersection points, which has the greatest distance to the ray’s origin.

4.6. Spread Algorithm 35

Algorithm 10 Spread Algorithm
Input: fire = the fire-data containing the chronological list of all perimeters

p = the fire’s point of ignition
num = the number of arrows
h = the hours in the past concerned for the spread speed computation

Output: a list of num arrows, each with an rad-angle of 2π
num to the adjacent ones,

the arrows’ length indicates the total spread extent in the particular direction,
the arrows’ thickness indicates the spread speed in the last h hours in the
particular direction

1: arrows = empty list
2: alphaStep = 2π

num
3: perimeterPast = getPerimeterXHoursAgo(fire, h)
4: perimeterNow = getPerimeterXHoursAgo(fire, 0)
5: for i = 0→ num− 1 do
6: dir = new Vector(cos(i ∗ alphaStep), sin(i ∗ alphaStep))
7: interPast = shootPerimeter(p, dir, perimeterPast)
8: if interPast = NULL then
9: interPast = shootPolygon(p, dir, perimeterPast.convexHull)

10: end if
11: interNow = shootPerimeter(p, dir, perimeterNow)
12: if interNow = NULL then
13: interNow = shootPolygon(p, dir, perimeterNow.convexHull)
14: end if
15: thick = computeThickness(orthodromicDist(interPast,interNow)h)
16: arrow = new Arrow(p, interNow, thick)
17: arrows.add(arrow)
18: end for
19: return arrows

4.6.4 Comments

Figure 4.8: Example - Spread Visualiza-
tion

This visualization approach augments
the static perimeter visualization by in-
tuitively presenting information about
a fire’s spread dynamic. Long and thick
arrows represent forceful fire progres-
sion, whereas short and thin ones repre-
sent a less rushing fire movement.
Implemented in a warn - application,
the amount of arrows may vary. For big
fires for example, it is probably good to
generate many arrows covering many
directions to properly inform people
around the fire.

36 Chapter 4. Concepts - The Visualization Algorithms

Algorithm 11 shootPolygon
Input: origin = the point where the ray starts

dir = the ray’s direction
poly = the polygon

Output: the point where the ray intersects the polygon (with max. distance to
origin)

1: intersections = empty list, vertices = poly.allV ertices, n = vertices.size
2: for i = 0→ n− 1 do
3: c = vertices[(i+ 1)%n]− vertices[i]
4: t = computeIntersectionT ime(vertices[i], c, origin, dir)
5: if 0 ≤ t ≤ 1 then
6: intersections.add(vertices[i] + t ∗ c)
7: end if
8: end for
9: return getMostDistantPoint(origin, intersections)

Algorithm 12 computeIntersectionTime
Input: originLine = the point where the line to intersect starts

dirLine = the vector along the line
origin = the point where the ray starts
dir = the ray’s direction

Output: a time t, so that originLine+t∗dirLine intersects the ray origin+u∗dir
for some u > 0

1: u = originLine×dirLine−origin×dirLine
dir×dirLine

2: if u ≤ 0 then
3: return ∞
4: end if
5: dirLineXdir = dirLine× dir
6: if dirLineXdir = 0 then
7: return ∞
8: end if
9: return origin×dir−originLine×dir

dirLineXdir

4.7. Danger Zone Algorithm 37

4.7 Danger Zone Algorithm

4.7.1 Motivation

The next algorithm is based on the fact, that the danger originating from the fire
is not distributed equally in all directions as might be the case in other natural
hazards like e.g. radiation catastrophes. To declare the dangerous areas around
the fire, it would be inappropriate to just draw circles around the point of ignition.
Instead, bushfire danger zones are aligned around the fire perimeter. Thus the
Danger Zone Algorithm determines zones in the fire’s environment that indicate
the potential future location of the bushfire. These zones are independent from
the user’s location and eventually rendered on the map.
To determine these zones in the transformation stage, three approaches were
developed. The first one is to declare danger zones that have constant distances
to the fire’s current perimeter hull, independent from the direction. The second
one extrapolates the fire’s movement using information about the fire’s spread in
the past. This extrapolation can of course not replace a bushfire simulation, but
it can help to inform about the fire’s movement by using the publicly available
information about the geometric fire progression. The third approach is to use
a hybrid algorithm that merges both approaches and extrapolates the fire’s
movement, but guarantees a minimum danger zone distance to the fire.
Input for all algorithms is again the chronologically ordered list of perimeter data
and some parameters that define the number of zones to compute (maxZones),
the minimum buffer distance (bufDist), the type of algorithm used (mode) and
extrapolation parameters (h and extraHrs). In summary, the question addressed
by this visualization is: "Where could the fire be in the future ?".

4.7.2 Algorithm

All following algorithms are based on the same approach: conducting an outwards-
polygon-buffering on the current perimeter’s hull. As described in Section 4.3.2
(Fire Frontline Algorithm), the hull can be computed with algorithms like the
Graham-Scan-Algorithm [15] and is saved in the perimeter object. The main differ-
ence between the three developed approaches is how the polygon is buffered:

1. In the simple version (mode 0), a constant outwards-polygon-offsetting is im-
plemented that offsets each line segment of the hull orthogonally outwards
to gain a constant buffer zone around the current fire area. By doing this,
the intersection point of two adjacent line segments after offsetting is deter-
mined using the function intersectLL (intersect-Line-Line) and represents
one vertex of the buffer zone polygon (see Figure 4.10). To gain the whole
buffer zone polygon, all line-segments are offset and all intersections of
neighboring lines are added as vertices.
This is done with different buffer distances in order to generate multiple

38 Chapter 4. Concepts - The Visualization Algorithms

danger zone layers. All resulting polygons are eventually saved in an 2D-
array with maxZones rows, each row containing the vertices of a danger
zone polygon.

2. The second approach (mode 1) uses extrapolation, a useful concept for the
visualization of dynamic geo-spatial phenomena, as mentioned in [9]. Here,
the position of the fire hull’s vertices is extrapolated under the assumption,
that the fire will locally continue spreading with similar direction and
speed as in the near past. Consequently, the approach implements variable
offsetting and the resulting danger zone is buffered differently at each vertex.
The computation works as follows: The algorithm looks at each vertex on
the current perimeter’s hull (vertexi) and computes its future position by
extrapolation. Two parameters are necessary for this: the local spread
direction and the local average spread speed.
At first the (normalized) direction is approximated by computing a so called
anchor point (anchori) using the function computeAnchor. The direction
from this anchor point to the current vertex is an approximation for the
local spread direction.

diri =
vertexi − anchori
|vertexi − anchori|

(4.5)

The implementation of computeAnchor can be different. In the prototype,
the nearest points to vertexi on past perimeters are computed using the
Nearest Point Algorithm. The anchor is then defined as the center point of
the resulting 2D point cloud.
After approximating the local spread direction, the local spread speed is
approximated by using an approach similar to the one used in the Spread
Algorithm. Here, the nearest point of vertexi to the perimeter h hours ago
(nearesti) is determined and the average spread speed of the last h hours is
computed as the division

vi =
orthodromicDist(vertexi, nearesti)

h
(4.6)

Having both an approximation for the direction and the speed, the extrapo-
lated position of the vertex for the next t hours is defined as

exi = vertexi + t ∗ vi ∗ diri (4.7)

Extrapolating each vertex of the current hull in this way yields the buffered
danger zone polygon depicting the t - hour extrapolation of the fire (see
sketch in Figure 4.11).

3. The hybrid approach (mode 2) simply combines the advantages of the latter
two approaches: it extrapolates the fire but at the same time guarantees
a minimum buffer zone distance. This is achieved by extrapolating each
vertex as in the second algorithm, but after extrapolation, the distance of

4.7. Danger Zone Algorithm 39

the new extrapolated position and the original hull is determined. If this
distance is smaller than the threshold bufDist, the constant offsetting of
the first algorithm is applied to the line segments surrounding vertexi.

4.7.3 Pseudocode

Algorithm 13 shows the pre-processing and initialization stage of the main Dan-
ger Zone Algorithm shown in Algorithm 14

Algorithm 13 Danger Zone Algorithm - <pre-processing and initialization>
1: hullV = fire.currentPerimeter.convexHull.allV ertices, n = hullV.size
2: vectors = new Vector[n], normals = new Vector[n]
3: offsetV = new Vector[maxZones][2 ∗n], result = new Point[maxZones][n]

4: for i = 0→ n− 1 do
5: vectors[i] = hullV [(i+ 1)%n]− hullV [i]
6: end for
7: for i = 0→ n− 1 do
8: norm = new Vector(−vectors[i].y, vectors[i].x).normalize
9: if norm · vectors[(i+ 1)%n] ≥ 0 then

10: norm = −norm
11: end if
12: normals[i] = norm
13: end for

4.7.4 Comments

Figure 4.9: Example - Danger Zone Visualiza-
tion

This approach uses colored areas
to illustrate the dangerous regions
around the bushfire. The colors of
choice are again hot color interpo-
lations between red and yellow to
indicate the fire threat. Addition-
ally, when using extrapolations,
uncertainty will always play a
role. As a consequence, this un-
certainty should be mentioned in
the key and be visualized by areas
that become increasingly transpar-
ent with increasing forecast time-
span t, especially when multiple
danger zones are displayed.

40 Chapter 4. Concepts - The Visualization Algorithms

Algorithm 14 Danger Zone Algorithm
Input: fire = the fire data containing the list of perimeters

bufDist = the (minimum) buffer distance (only mode 0 and 2)
maxZones = the number of zones to generate
h = using average spread speed of last h hours (only for mode > 0)
extraHrs = extrapolation time-steps in hours (only for mode > 0)
mode = 0 means constant buffering, 1 means variable buffering (extrapola-
tion), 2 means hybrid

Output: a 2 dimensional array with maxZones rows, each row contains the
ordered vertices of the respective danger zone

1: <pre-processing and initialization (see Algorithm 13)>
2: if mode == 0 then
3: for i = 0→ n− 1 do
4: for step = maxZones− 1→ 0 do
5: offsetV [step][2 ∗ i] = hullV [i] + (step+ 1) ∗ bufDist ∗ normals[i]
6: offsetV [step][2 ∗ i + 1] = hullV [(i + 1)%n] + (step + 1) ∗ bufDist ∗

normals[i]
7: end for
8: end for
9: for i = 0→ n− 1 do

10: for step = maxZones− 1→ 0 do
11: result[step][(i+ 1)%n] = intersectLL(

offsetV [step][2 ∗ i], offsetV [step][(2 ∗ i+ 1)%(2 ∗ n)],
offsetV [step][(2 ∗ i+ 2)%(2 ∗ n)], offsetV [step][(2 ∗ i+ 3)%(2 ∗ n)])

12: end for
13: end for
14: else
15: for i = 0→ n− 1 do
16: dir = (hullV [i]− computeAnchor(hullV [i])).normalize
17: nearest = NearestPointAlgorithm(hullV [i], P erimeterXHoursAgo(fire, h))

18: v = orthodromicDist(nearest,hullV [i])
h

19: for step = maxZones− 1→ 0 do
20: result[step][i] = hullV [i] + (step+ 1) ∗ extraHrs ∗ v ∗ dir
21: if mode == 2

and dist(result[step][i], fire.currentPerimeter.convexHull)
< bufDist then

22: result[step][i] = < const. offset hullV [i] by bufDist like in mode 0 >
23: end if
24: end for
25: end for
26: end if
27: return result

4.8. Street Algorithm 41

original line-segments

offset lines

normal

intersection

Figure 4.10: Sketch of the Constant Out-
wards Offsetting

distance

t * v * dir

vertex

extrapolated
vertex

hull

danger zone

past perimeter

Figure 4.11: Sketch of the Extrapolation

4.8 Street Algorithm

4.8.1 Motivation

The last visualization approach targets the user-group of traffic participants.
Since large bushfires can have a huge impact on the infrastructure and the traffic
in the affected regions, people driving in their car to escape the fire or to reach a
destination on the other side of the burns are confronted with special questions
like e.g. "How endangered are the streets in the user’s environment ?", "Which streets
are leading into the bushfire and should thus by no means be used ?" and "What is the
shortest evacuation route bringing the user into a not acutely endangered zone ?".
This visualization approach is designed to answer all of these three questions on
a single map. It intuitively delivers information about how threatened specific
roads in the user’s environment are, by coloring the surrounding streets according
to their threat level. Additionally it highlights streets leading into the fire by
placing stop-signs on them and eventually, the shortest evacuation route leading
the user out of the endangered zones is computed and displayed on the map.
Beside the street-data (streets), the input for this approach are the user GPS -
position (u), the current perimeter of the fire (peri), the search-range (maxDist), a
so called threat-value function (threat()) and a function that specifies the coloring
of different threats (getColor()).

4.8.2 Algorithm

The algorithm itself is a variant of the Dijkstra [17] graph search algorithm which
is a prominent greedy shortest path algorithm. It starts at the way-point in the
street network that is closest to the user’s GPS position and searches the envi-
ronment until all reachable way-points in the given search range are visited or

42 Chapter 4. Concepts - The Visualization Algorithms

located in the fire area.
During search, the algorithm constantly visits way-points by always going one
step further along the shortest not yet visited path.
At each of these way-points, it computes a threat value using the function threat,
which can be passed as a parameter to the algorithm. A threat value is a nu-
merical representation of how threatened a given position is, with respect to the
fire hazard. The design of such a threat value function can be very complex and
should be done in cooperation with experts. In the prototype implementation,
the threat value is approximated by the distance a point is away from the next
fire or by the expected time, a fire needs to progress until the position is reached
(based on a simple extrapolation similar to the Danger Zone Algorithm’s). This
threat value is then passed to a second function getColor mapping the threat
value to a color that is hence used to color the just visited road-segment. Doing
this at each visited way-point in the surrounding street network, all streets are
finally colored according to their endangerment.
In addition to the threat value check at each way-point, an inside-test between
the way-point and the current fire perimeter (or its hull) is conducted. In this way,
the algorithm finds out all road-segments that lead into the fire area. These are
then marked by stop-signs. Moreover, the search stops at road-segments leading
into the fire which is important to the evacuation-route computation.
To compute the shortest evacuation route starting at the user’s position leading
into a zone rated "safe", Dijkstra’s shortest path property is crucial. The prototype
implementation and the pseudocode beneath implement the algorithm using a
priority-queue containing search nodes 17 that are sorted by ascending way-costs.
Because the algorithm always pops the first element from the queue, it is guar-
anteed that the search always visits the next cheapest path first and this implies,
that when the algorithm expands a search-node, it found a cheapest path from
the user to its way-point. This enables the algorithm to find a shortest evacuation
way during the search coloring the streets and detecting the road-segments lead-
ing into the fire: In case the threat value of the user’s position is initially rated
"endangered", the search’s path from the user to the first expanded search node
whose way-point is rated "safe" is a shortest evacuation route. It can be recon-
structed by simply back-chaining over this search node’s parent-pointers. This
reconstructed path is finally colored blue on the map. An additional guarantee is,
that the reconstructed evacuation route will never lead through the fire, because
the search does not generate the children of search nodes in the fire and hence,
a reconstructed shortest path using the parent-pointers of a "safe" way-point
cannot contain a street leading through the fire.

17A search node is a triple containing the actual way-point in the street network, a pointer to the
node’s parent search node that generated the node and the total path costs from the root node (at
the user-position) to the node. The root node has a NULL-parent-pointer.

4.8. Street Algorithm 43

4.8.3 Pseudocode

Algorithm 15 shows the pseudocode of the Street Algorithm.

4.8.4 Comments

This visualization method answers multiple questions at once. To maintain
simplicity and intuitiveness, each question is addressed with an intuitive visual-
ization approach:

• the street threat is communicated by directly coloring the road-segments
(with color-interpolations between red (highly endangered) and green
(safe)),

• streets that should not be used are marked with an internationally under-
standable sign: the stop-sign, that, in conjunction with the surrounding red
streets, communicates "don’t use this road anymore" to the user and

• the evacuation way colored in blue is a clearly noticeable contrast to the
threat-colored streets that mainly use warm colors and to the uncolored
normal streets outside the search range.

Implemented in a website or app, it would probably be a good approach to let
the user enable and disable features like the colored streets or the stop-signs, so
that he is able to focus on what he is especially interested in.

Figure 4.12: Example - Street Visualization

44 Chapter 4. Concepts - The Visualization Algorithms

Algorithm 15 Street Algorithm
Input: peri = the current perimeter of the fire

u = the user’s GPS-position
maxDist = the search range
streets = the street network data
threat() = a function computing a threat value for a given position
getColor() = a function mapping threat values to colors

Output: the streets around the user are colored according to their threat level
road-segments leading into the fire are marked by stop-signs
the shortest evacuation route is colored blue

1: startNode = new SearchNode(streets.getNearestWayPoint(u),NULL,0)
2: startThreat = threat(startNode.location)
3: evac = false, done = empty list,todo = empty priority-queue
4: todo.add(startNode)
5: while todo.size 6= 0 do
6: curNode = todo.pop()
7: done.add(curNode.location)
8: if startThreat 6= "safe" and not evac

and threat(curNode.location) == "safe" then
9: evac = true

10: < color evacuation way (curNode.getPathToRoot()) blue >
11: end if
12: for all WayPoints neighbor adjacent to curNode.location in streets do
13: neighborNode = new SearchNode(neighbor, curNode,

curNode.cost+ cost(road segment from curNode.location to neighbor))

14: if road segment from curNode.location to neighbor not colored then
15: < color road segment from curNode.location to neighbor

with getColor(threat(neighbor)) >
16: end if
17: if inside(neighbor, peri) then
18: < add stop-sign to road segment from curNode.location to neighbor >
19: else if neighbor /∈ done and dist(neighbor, u) < maxDist then
20: if neighbor already in some SearchNode beforeNode in todo

with beforeNode.cost > neighborNode.cost then
21: todo.remove(beforeNode), todo.add(neighborNode)
22: else if neighbor not already in some SearchNode in todo then
23: todo.add(neighborNode)
24: end if
25: end if
26: end for
27: end while
28: return

4.9. Conclusion 45

4.9 Conclusion

Seven different approaches to visualize bushfire incidents were introduced in
this chapter. Besides the raw fire-perimeter data, most of them are based on
additional input parameters (as can be seen in the overview table Figure 4.1) that
can be assumed to be available in mobile apps and websites. They all use these
parameters in the transformation stage to produce visualizations that provide
more information than current visualizations. For this, the transformations used
range from simple geometric calculations as in the Nearest Point Algorithm to
more complex analyses as in the Danger Zone Algorithm or the Street Algorithm.
All visualizations are designed to answer particular questions that casual users
are confronted with in bushfire regions. To answer these questions, the relevant
information is visualized on the map.
In the visualization stage, a variety of different 2D-visualization techniques is
applied. They range from simple marker placements over lines, arrows, curves
to polygon - areas and they use visual variables like color and transparency to
emphasize temporal development and uncertainty. Beside the static approaches
for spatio-temporal visualization, two animated visualization techniques are
proposed.

One last visualization feature will be introduced now. It is a simple way to
provide some general information about the threat at the user’s location and it
can be used in conjunction with all introduced visualizations:
Besides the usage in the Street Algorithm, the concept of a threat value representing
the threat at a given position originating from a bushfire can be used to adapt
the visualization of the user-marker on the map. In an application where the
user’s position is marked on the map, the marker can be animated to pulsate
with increasing frequency when the threat value at the user’s position increases
and it could change color according to a getColor function. The advantage is,
that this feature can be combined with all visualization techniques showing the
user on the map once an appropriate threat value function is designed. It is also
implemented in the prototype system (see Figure 4.13) and used in conjunction
with all introduced visualization techniques.

Figure 4.13: Example - Threat Value User-Marker

46 Chapter 4. Concepts - The Visualization Algorithms

Chapter 5
Implementation

This chapter will give an overview over the prototype implementation developed
for this thesis. It will briefly discuss the software architecture, outline the most
important features and introduce the Graphical User Interface.

5.1 Overview

After developing new concepts for the visualization of bushfires, the next goal
was to implement them in a prototype system. Therefore, a Java program was
developed that implements all introduced algorithms in Java as well as all visual-
izations that are currently used in public warn-applications. The program’s main
tasks are to:

• test and demonstrate the new visualizations

• compare them with the current ones

• generate visualizations suitable for the use in the evaluation - phase of this
thesis

• enable finding good parameter configurations for all algorithms by provid-
ing a possibility to easily change parameters

47

48 Chapter 5. Implementation

5.2 Software Architecture

The following diagram illustrates the program’s main workflow that is closely
related to the classical visualization pipeline introduced in the Related Work
(3.1) section. As can be seen in the diagram, the three main stages Acquisition,
Transformation and Visualization are represented in the software architecture too.

Figure 5.1: The Software Architecture Pipeline

While the Acquisition of course is not directly part of the software, their results
are fed into the program. The most important inputs from the Acquisition stage
are the fire-data and the street-data.
The fire-data used in the prototype system was provided by the University of Mel-
bourne and consists of shapefiles18 containing the fire-perimeter and surface data
of 5 bushfires located in the Melbourne area that have catastrophic extents. These
shapefiles contain chronologically ordered layers with geo-referenced polygons
depicting the fire perimeters at 5 moments in time each with a distance of 1 hour.
The files originate from runs of the expert bushfire simulation software Phoenix
Rapid Fire [18] and are read by the developed fire-loading methods which use an
open-source shapereader-library by Thomas Diewald 19 to access the shapefile’s
content. After loading the shapefiles, the fires are translated to the internal classes
and added to the internal model. This model manages the software world-state.
It has a list of all loaded fires and information about the user and the map as well
as the street data. The internal classes are modeled similar to the fire - geometry
data introduced in section 4.1. A fire object for example contains an point of igni-
tion and a list of perimeter-objects, which again contain lists of polygons and so
on. Consequently, a set of classes provides data-structures to model all important
entities that occur in the bushfire setting and the internal model representing the
current bushfire scenario is maintained by the program.
The second important input, the street-data used in the implementation of the

18https://en.wikipedia.org/wiki/Shapefile [last accessed Sept. 5, 2013]
19https://github.com/diwi/diewald_shapeFileReader [last accessed Sept. 5, 2013]

https://en.wikipedia.org/wiki/Shapefile
https://github.com/diwi/diewald_shapeFileReader

5.2. Software Architecture 49

Street Algorithm, is provided by CloudMade20. Concretely, a database file with
OpenStreetMap21 - data of streets in the fires’ environment (here: Victoria in
Australia) is used by the program which can then run the Street Algorithm on
the street network contained in these files. To access the OpenStreetMap files,
some functions of the open-source Java library Traveling Salesman22 by Marcus
Wolschon and the library’s fast binary-database format for street-map data are
used.

After loading all necessary data and establishing the current bushfire scenario
in the internal model, the Transformation stage takes over. This stage is com-
pletely written in Java. It encompasses the core algorithms for the visualiza-
tions introduced in Chapter 4, additional algorithms used, like for example the
Graham-Scan-Algorithm computing the convex hull or ray-casting algorithms for
intersection checks, and everything else that is related to the program’s manage-
ment of the internal model and computations. To improve performance and to
remain responsive, many algorithms and especially all visualization algorithms
introduced are programmed to run concurrently. In case they need some time
to finish (like for example in an extensive street search), all intermediate results
(like colored streets or already found stop-signs) are displayed as soon as the
algorithm computed them.

The last stage finally manages the graphical output, which includes the rendered
map and the actual visualizations. For this, the Visualization stage is implemented
using the open-source visualization framework Processing23 for Java which uses
OpenGL24 to improve performance. For the geo-visual output, a slippy map is
implemented and rendered using the support of the Unfolding Maps25 extension
by Till Nagel for Processing.
Additionally, the program offers a GUI which will be introduced in the sec-
tion Features and Graphical User Interface (5.3). It is implemented using Java
Swing26 in conjunction with the SeaGlass Look and Feel27 and it consists of four
main sections: a control panel to manage the scenario, a panel to configure the
algorithms’ parameters, a menu-bar and an area where the slippy map containing
all results and the key are rendered on the screen.

Because of the program’s modular architecture, extending the model and the

20http://downloads.cloudmade.com/oceania/australia_and_new_zealand/
australia/victoria#downloads_breadcrumbs [last accessed Sept. 5, 2013]

21http://www.openstreetmap.de/ [last accessed Sept. 5, 2013]
22http://sourceforge.net/projects/travelingsales/ [last accessed Sept. 5, 2013]
23http://processing.org/ [last accessed Sept. 5, 2013]
24http://www.opengl.org/ [last accessed Sept. 5, 2013]
25http://unfoldingmaps.org/ [last accessed Sept. 5, 2013]
26http://de.wikipedia.org/wiki/Swing_%28Java%29 [last accessed Sept. 5, 2013]
27http://seaglass.googlecode.com/svn/doc/index.html [last accessed Sept. 5,

2013]

http://downloads.cloudmade.com/oceania/australia_and_new_zealand/australia/victoria#downloads_breadcrumbs
http://downloads.cloudmade.com/oceania/australia_and_new_zealand/australia/victoria#downloads_breadcrumbs
http://www.openstreetmap.de/
http://sourceforge.net/projects/travelingsales/
http://processing.org/
http://www.opengl.org/
http://unfoldingmaps.org/
http://de.wikipedia.org/wiki/Swing_%28Java%29
http://seaglass.googlecode.com/svn/doc/index.html

50 Chapter 5. Implementation

GUI is uncomplicated. It exists a class which encapsulates all visualization-
algorithms and new ones can be added straightforwardly. In addition, settings
for the window (e.g. resolution of map, resolution of window), the graphics
quality (e.g. Anti-Aliasing) and other properties are saved in and loaded from
a config-file, which allows to configure the program for different machines in a
way that matches the hardware.

5.3 Features and Graphical User Interface

As already mentioned, the prototype system’s GUI consists of four main sectors,
which are identified in Figure 5.2:

A slippy map28 (Sector 1) that displays the current scenario with its fires, the
user’s position and of course the results of the visualization algorithms applied
as well as an appropriate key. It uses the map service providers OpenStreetMap
for topographic road maps and Microsoft Aerial for hybrid satellite images with
roads. Switching between satellite and road-map mode is possible by simply
pressing the corresponding button on the right side of the window.

Figure 5.2: The Main Sectors of the Prototype Program’s GUI

Besides this, the program enables the user to configure the scenario that is visu-
alized with the corresponding control panel (Sector 2) and the map itself. One

28a map that can be zoomed and panned, as known from websites like OpenStreetMap or Google
Maps

5.3. Features and Graphical User Interface 51

can for example move the user in the scenario by clicking at a position on the
map, select the fires one is interested in, enable or disable the rendering of a
perimeter and one can let the program show the convex hull of a fire. Moreover
it is possible to go back and forth in time to see the fire’s development over time
and to select the moment in time that the algorithms should be applied to.

As one of the program’s main goals is to test, demonstrate and configure the
algorithms, the algorithm-panel (Sector 3) offers elements like sliders, checkboxes
and buttons to allow the user to configure, set and change the crucial parameters
for each algorithm. In the following, he can apply them to the configured scenario
by pressing the respective algorithm-button.

Since the visualizations that are used in the evaluation phase should be generated
with the prototype program, a few more features like loading additional fires
at runtime, loading whole predefined scenarios and the functionality of taking
screenshots of the map extract are integrated in the menu-bar (Sector 4) in the
upper left corner of the window.
At any time, an appropriate key for the currently applied algorithm is shown
in the slippy map, the map’s scale is illustrated and it is possible to change the
key-language (German to English or vice versa) by pressing the corresponding
menu-bar button. For finally taking a screenshot of the whole visualization dis-
played on the map, the user can save the current extract together with the key as
a .png image by pressing the "Screenshot" button in the menu-bar.

Figure 5.3: Screenshot of the Prototype Program

52 Chapter 5. Implementation

Chapter 6
Evaluation

This chapter concerns the last goal of this thesis: the evaluation of the developed
visualization approaches.
For this, the conducted study’s structure is outlined and the study’s most inter-
esting results are described and discussed.

6.1 Overview

After developing new visualization approaches for bushfires and after developing
a prototype system that implements all approaches, the last step is to evaluate
the visualizations in order to find out, which visualizations suit best for the
application in public bushfire warn apps and websites. The main goals of the
study are thus to

• assess the communicated threat of the different approaches in several sce-
narios

• compare all approaches with respect to the communicated threat

• assess the visualizations’ popularity amongst users

• gather some general information about the users and their usage of maps

To achieve these goals, several types of evaluation are suitable. One possibility is
to invite several participants and to let them use the prototype program in order
to explore different scenarios and to rate their threat. Another possibility is to
invite participants in order to let them fill in a questionnaire, showing examples of
visualizations. But both lab-study approaches have one disadvantage in common:
the number of participants is limited due to the time-consuming supervision.

53

54 Chapter 6. Evaluation

In order to assess data from many participants of the right user-group (users of
public apps and websites that are laypersons in the field of fires), the evaluation in
this thesis’ context is designed as an online-study. The advantage here is that the
study is freely and at every time available for everybody willing to participate.
Moreover the web-approach is close to the real application environment, the
visualizations are designed for, since they are shown in a web-browser on a PC
or mobile device.

6.2 Study Structure

The online-study is implemented using the web-survey system LimeSurvey29

and available in English and German. With this system it is possible to display
screenshots showing visualizations generated with the prototype program to
the participant in order to ask him questions about what he sees. The survey is
constructed as follows:

Scenarios

The survey’s main task is to assess the threat communicated by different visual-
izations of bushfires in order to enable a following comparison of the approaches.
To achieve this goal, three different scenarios were set up, each consisting of a
specific fire at a specific location and a user position:

• Scenario 1: A fire with a great distance to the user (15 km), a less dangerous
situation

• Scenario 2: A fire with mid-range distance to the user (6 km), a dangerous
situation

• Scenario 3: A fire close to the user (3 km), a highly dangerous situation

For each of these three scenarios, ten different visualizations were generated
using the prototype implementation:

1. the currently used simple Perimeter Visualization

2. the currently used Ignition Marker Placement

3. the Nearest Point Visualization

4. the Nearest Point Development Visualization (static)

5. the Fire Frontline Visualization

6. the Fire Frontline Development Visualization (static)
29http://www.limesurvey.com/ [last accessed Sept. 5, 2013]

http://www.limesurvey.com/

6.2. Study Structure 55

7. the Danger Zone Visualization with a 4 and an 8 hour danger zone

8. the Spread Visualization with 8 arrows

9. the Street Visualization with colored streets

10. the Street Visualization without colored streets

This results in a total of 3 ∗ 10 = 30 different map extracts presented to the user.

Questions

But before the user rates the threat of the scenarios using the 30 map-extracts, a
first calibration question is asked, measuring the participants anxiety or cautious-
ness. In this first question, a map extract showing the perimeter of an artificial
circular fire and 10 positions adjacent to each other (with a distance of 2 km
between two subsequent positions) is given. The user is then asked

Please estimate, up to which position you would rate the threat emanating from the fire
to be extremely high.

After that please estimate, from which position on you would rate the threat emanating
from the fire to be very low.

To answer, the participant is supposed to click on the radio-buttons that belong
to the chosen positions. This introductory question is designed to check if a
consensus about the threat originating from a fire exists amongst all participants.

After this first question, the study’s main part begins. An overview of all visu-
alizations with small examples is shown to the participant explaining what the
particular visualizations display and that all of them will appear during the next
30 questions. In these 30 following questions, all 30 map extracts are shown (one
at a time) in a previously defined but random order, together with the question

How would you rate the threat emanating from the fire at the location marked by the blue
dot ?

The user’s task is then to look at the visualization shown and to rate how threat-
ened the marked user position (blue dot) is on a discrete scale of 0 to 5, where 0
means no threat at all and 5 means acute danger of life. All intermediate steps are
interpolations between these two extremes.
Finally, these questions assess the visualizations’ communicated threat, because
the participants are not informed that they will only be confronted with three
different scenarios, each scenario 10 times. To ensure that the participants are not
misinterpreting distances, the map extract shows, beside the visualization’s key,
the map’s scale which remains fixed in all questions.

56 Chapter 6. Evaluation

After completion of all scenario visualizations, the user’s favorite visualizations
are assessed: The first popularity question

Which visualizations give the best information to you ?

shows an overview of all 10 visualizations that were shown in the scenarios before
and allows the participant to mark up to three favorite visualizations. Similarly,
the two following popularity questions assess whether there is a difference
between favorites for websites and for apps by asking

Thinking of a mobile Bushfire-warning-application (e.g. for a smartphone), which
visualizations would you prefer ?

and

Thinking of a Bushfire-warning website, which visualizations would you prefer ?

Finally, some general information about the participant is gathered: The question

How often do you use electronic maps (e.g. Google Maps, mobile navigation systems,
etc.)?

and

How often do you use paper-maps (e.g. road maps, atlases, etc.)?

with answer-possibilities everyday, every week, every month, a few times per year and
hardly ever / never provide information about the participants usage of maps and
the question

How often do you use OpenStreetMap ?

with the same possible answers, checks whether a participant is used to the map
extracts’ map-style.
The very last questions ask for the participant’s gender and age and ultimately, a
possibility to leave text comments is given.

Overall, it took the participants 16 minutes in average to complete all these
questions.

6.3 Study Results

This section will present the most interesting results of the study. The focus
lies on an overview over the gathered data, the comparison of the visualization
approaches, the popularity results and noticeable trends. Significance tests and
correlation tests are beyond the scope of this bachelor thesis and thus not part of
this evaluation.

6.3. Study Results 57

General

The first interesting results are some general statistics related to the participants
and their usage of maps:
At the time of evaluation, 107 participants completed all questions, with their age
ranging from 16 to the age of 66. The average age of all participants was 32 years
with a standard deviation of 15.4 years. Furthermore, 35 participants (32.71%)
were female and 72 (67.29%) male.

Figure 6.1: The Usage of Electronic Maps Figure 6.2: The Usage of Paper-Maps

The results of the questions about the usage of maps indicated, that the set of
participants was a good representation of the targeted user group, which were
users of public warn apps and websites. While only a few participants were used
to the displayed map-style of OpenStreetMap (more than 82% used OpenStreetMap
at most a few times per year, 66 % hardly ever or did not know it), Figure 6.1
shows that the general usage of electronic and online maps was wide-spread
amongst all participants since more than 85% of them used electronic maps at
least once a month. On the other side, the participants rarely used non-electronic
paper-maps. As Figure 6.2 shows: only about 13% of them use paper-maps on a
monthly basis.
This means, the participants could mainly focus on the displayed visualizations
and did not have to break new ground using the online map-extracts, since online
maps were, in principle, a familiar environment for them.

The next part of the evaluation addresses the communicated threat. The eval-
uation of the introductory calibration question found, that the majority of the
participants generally agreed on estimating a bushfire’s threat. 78 % estimated
the threat originating from a fire to be very high up to a distance of at most 6 km.
At the same time, 70 % rated a bushfire’s threat to be negligible from a distance
of 12 km or more on. These results mostly match the participants’ estimates in
the following scenario questions, since here, the scenario with a distance of 3 km
was most widely recognized as very dangerous, the scenario with 6 km distance
was rated generally dangerous and the scenario, where the user is 15 km away

58 Chapter 6. Evaluation

from the fire, was mostly rated moderately or less dangerous.

Comparison of the Communicated Threat

The main part of the scenario-evaluation is the comparison of all different vi-
sualization approaches with respect to the communicated threat. The results
are summarized in the following table showing the visualizations ranked by
their averagely communicated threat and the diagrams in Figure 6.3, 6.4 and 6.5
depicting a graphical comparison:

Statistical Abbreviations:
x̃ = median of communicated threat; ∅x = average of communicated threat;
σx = standard deviation of communicated threat
Reminder:
threat is measured on a discrete scale of 0 (no threat at all) to 5 (acute danger of life)

Abbreviations for the Visualizations:

P simple Perimeter FFD Fire Frontline Development
IM Ignition Marker SP Spread
NP Nearest Point DZ Danger Zone
ND Nearest Point Development S (c) Street (colored)
FF Fire Frontline S (nc) Street (not colored)

Table 6.1: Abbreviations for the Visualizations

Scenario 1 (15 km) Scenario 2 (6 km) Scenario 3 (3 km)
Vis. x̃ ∅x σx Vis. x̃ ∅x σx Vis. x̃ ∅x σx

DZ 3 2.98 1.14 DZ 4 4.30 0.79 DZ 5 4.58 0.81
FFD 3 2.76 1.16 FFD 4 3.65 0.90 S (c) 5 4.48 1.02
SP 3 2.55 1.12 ND 4 3.57 0.86 FF 5 4.48 0.81
ND 2 2.45 1.12 S (c) 4 3.47 1.02 FFD 5 4.42 0.78
P 2 2.39 1.10 SP 3 3.16 0.93 SP 4 4.33 0.83
S (nc) 2 2.16 1.18 S (nc) 3 2.97 0.95 NP 4 4.27 0.85
FF 2 2.13 1.10 FF 3 2.91 1.00 ND 4 4.13 0.94
S (c) 2 1.92 1.09 P 3 2.88 1.07 S (nc) 4 3.90 1.15
NP 2 1.84 1.16 NP 3 2.73 1.03 P 3 3.30 1.05
IM 0 0.60 0.96 IM 1 1.46 1.12 IM 2 2.38 1.02

Table 6.2: Comparison and Ranking of the Communicated Threats

Analyzing the table, it is remarkable that the Danger Zone (DZ) visualization
warned strongest in all scenarios. Similarly, the spatio-temporal visualizations
involving comparably much transformation and analysis of the data, especially
the Fire Frontline Development (FFD), warned in most cases strongly and the Spread

6.3. Study Results 59

visualization (SP) remained mid-table through all scenarios..
Comparing the new visualizations with the currently used ones, it is noteworthy
that the Perimeter (P) visualization communicated in all scenarios less endanger-
ment than the Danger Zone, the Fire Frontline Development, the Spread visualization
and the Nearest Point Development (ND) approach, which are spatio-temporal. In
scenario 2 and 3, even the colored Street (S (c)) visualization threatens the users
more than the Perimeter depiction .
Moreover, the Perimeter’s communicated threat decreases relative to the new
visualizations’ when the user comes closer to the fire and the situation becomes
increasingly dangerous. This can be seen by looking at the Perimeter ranking in
the scenarios. In scenario 1, the Perimeter is ranked 5th, in the following scenario
the ranking drops to 8th and in the most dangerous scenario, the Perimeter is
ranked second to last above the Ignition Marker (IM), with a median value of
3 while the Danger Zone records a median of 5. This shows, that the closer the
fire is, the less people are warned using the Perimeter, in comparison to the new
visualizations.
The Ignition Marker itself is ranked last in all scenarios.

Figure 6.3: Comparison of the Commu-
nicated Threat in Scenario 1 (15 km)

Figure 6.4: Comparison of the Commu-
nicated Threat in Scenario 2 (6 km)

Especially interesting is the difference between the first and last visualization, the
Danger Zone and the Ignition Marker: In each scenario, their communicated threat
differs by 3 median values, which is huge when considering a scale of 0 to 5. As
an example, the threat communicated in scenario 3, the most dangerous scenario
where the user is only 3 km away from the fire, the Danger Zone communicated
this acute danger with an average value of 4.58 and a maximum median value

60 Chapter 6. Evaluation

of 5 whereas the Ignition Marker still communicated a median value of 2 with an
average of 2.38, which is even less than the Danger Zone’s value for scenario 1.
Thus, the currently most wide-spread visualization method communicates by far
the least threat, compared to all introduced alternatives.
A further detail is the behavior of the colored Street visualization. In scenario
1, the user’s position was located next to streets rated "safe" by the threat value
function and thus colored green. In the second scenario, the user’s environment
was colored orange and in the last scenario of course, the streets around the user
were colored red. Analogue to the streets’ color, the communicated threat as well
as the ranking relative to all other visualizations increased from median value
2 and rank 8 in scenario 1 over median value 4 and rank 4 in scenario 2 to the
maximum median value 5 and rank 2 in scenario 3. These communicated threat
values might possibly be connected with the coloring and people might tend to
believe the coloring disregarding distances and other indicators. If this is the case,
it would emphasize that developing good threat value and coloring functions is
crucial.

Figure 6.5: Comparison of the Commu-
nicated Threat in Scenario 3 (3 km)

The diagrams 6.3 to 6.5 illustrate
the comparison graphically and it is
clearly noticeable, that the danger com-
municated by all visualizations in-
creased, when the user’s distance to
the fire decreased.
With increasingly dangerous scenarios,
the new concepts provided more warn-
ing compared to the currently used
ones and the Ignition Marker always
communicates least threat.
In the two first and not highly criti-
cal scenarios, the spatio-temporal vi-
sualizations Danger Zone, Fire Frontline
Development, Spread and Nearest Point
Development communicated a higher
threat value than non-temporal visual-
ization. In a critical situation (Figure
6.5) though, one new visualization is
just as good as the other while the cur-
rent visualizations both still communi-
cate less danger.

Popularity

The second main part of the evaluation is the acceptance of the approaches
amongst users and the popularity of the visualizations. The following table

6.3. Study Results 61

and the diagrams 6.6, 6.7 and 6.8 summarize the results of the three popularity
questions asking for the user’s favorites in general, with respect to mobile and
with respect to website applications. (Abbreviations see in the Comparison of
Communicated Thread (6.3) section above - Table 6.1)

General Popularity Mobile Popularity Web Popularity
Vis. Votes % Vis. Votes % Vis. Votes %
DZ 86 31.97% DZ 80 32.52% DZ 71 27.63%
S (c) 50 18.59% S (c) 49 19.92% S (c) 50 19.46%
FFD 41 15.24% FFD 37 15.04% SP 44 17.12%
SP 37 13.75% SP 32 13.01% FFD 38 14.79%
P 21 7.81% P 18 7.32% P 24 9.34%
ND 11 4.09% ND 13 5.28% ND 15 5.84%
FF 10 3.72% FF 6 2.44% FF 6 2.33%
S (nc) 8 2.97% S (nc) 6 2.44% S (nc) 5 1.95%
IM 4 1.49% IM 3 1.22% IM 2 0.78%
NP 1 0.37% NP 2 0.81% NP 2 0.78%

269 100% 246 100% 257 100%

Table 6.3: Comparison and Ranking of the Popularity

Figure 6.6: The General Popularity of
all Visualizations

Obviously, 4 clear favorites exist: the
Danger Zone approach, the colored
Street approach, the Fire Frontline De-
velopment visualization as well as the
Spread visualization. These four new
approaches rank top 4 in all three
popularity questions and it is notice-
able, that these are the algorithms
that involve most transformation com-
putation and analysis. Three of
them are spatio-temporal visualizations
and the fourth is the Street algo-
rithm.

A further remarkable connection is to the
results of the communicated threat: the
four most popular approaches are also
the approaches, that communicated a
comparably high threat and that, in most
cases, communicated a threat higher
than the Perimeter depiction (and conse-

quently higher than the Ignition Marker), whose popularity lags far behind the
four favorites’.
All other visualizations, namely the Nearest Point, the Fire Frontline, the uncolored

62 Chapter 6. Evaluation

Street visualization, the Nearest Point Development approach and the wide-spread
Ignition Marker are unpopular and gathered in each question less then 13% of
the votes in total together. One factor that certainly plays a role here is, that
the Fire Frontline Development approach comprises the Nearest Point, the Nearest
Point Development approach and the Fire Frontline approach in some way. It also
shows where the nearest point is, it shows the current frontline and it shows
the development thereof. Similar, the Spread algorithm comprises a perimeter
depiction by augmenting it with spatio-temporal information about the spread
behavior and the colored Street approach is an extension of the uncolored version.

All these results show, that the users want visualizations other than the currently
used ones and that the introduced new visualization approaches are suitable
alternatives. The results also imply, that users prefer visualizations that warn
comparably strong and that involve some kind of analysis and transformation to
provide more information about the situation and the bushfire than offered by
current visualizations.

Figure 6.7: The Mobile Popularity of all
Visualizations

Figure 6.8: The Web Popularity of all
Visualizations

As a last result, the comparison of Figure 6.7 and 6.8 shows, that there is no note-
worthy difference between the desired visualizations in mobile apps and websites.
Except that the Spread visualization and the Fire Frontline Development swapped
places in the ranking of the website popularity, the participants’ favorites remain
the same.

Chapter 7
Conclusion and Outlook

This chapter concludes the thesis and provides some recommendations for further
work in the area.

7.1 Conclusion

The goal of this work was to develop several new approaches to visualize bush-
fire incidents in public warn apps and websites. Additionally, these new concepts
were to implement in a prototype system and should be evaluated in order to
compare them with the current approaches, for finding out whether they are
suitable alternatives for the visualization in public warn applications.

In the related literature there are some important concepts like the Visualization -
Pipeline, the completeness of data vs. comprehensibility of data tradeoff, the concept
of visualizing uncertainty and the concept of "Visualizations answering particular
questions". All these concepts were taken into account when developing the new
visualization methods.
The currently available public warn apps and websites mainly use a simple static
marker-placement at the fire’s location of ignition and some recent websites addi-
tionally added a depiction of the most up-to-date perimeter. But both approaches
are static, do not include the temporal dimension and are not personalized in a
way that the visualization adapts to the user’s situation. Moreover, no addition-
ally available information like data about streets in the environment or the user’s
position is used for the bushfire’s visualization.
Besides these public visualizations, expert systems like bushfire prediction and
simulation programs visualize bushfire data in a professional and scientific way.
These visualizations contain very much information and are very accurate, but

63

64 Chapter 7. Conclusion and Outlook

usually, the knowledge of an fire-expert or a scientist is needed in order to decode
the information in the visualization and to understand what is visualized and
what it means. Consequently, these expert visualizations are not suitable for
laypersons.

For filling the gap between complex expert visualizations and less informative
public ones, the 7 new visualization concepts for bushfires

1. Nearest Point

2. Nearest Point Development

3. Fire Frontline

4. Fire Frontline Development

5. Spread

6. Danger Zone

7. Street

and the corresponding algorithms were developed, each answering different
questions and each using different visualization techniques like markers, colored
lines, areas, curves and animations. To additionally improve the communicated
information, parameters describing the spatio-temporal development, the user’s
position and information about the streets are included in the algorithms and
eventually used for visualization.

To demonstrate, test and compare the new visualization algorithms, a prototype
system was developed in Java implementing all current and new visualizations
in an environment that allows users to set up a bushfire scenario, using bushfire
data from the Phoenix simulation, and that enables them to set and change all
important parameters for the algorithms. The visualizations generated with this
program were used in the final evaluation.

In this final part of the work, the developed approaches were evaluated and com-
pared to each other as well as to the currently available public visualizations. An
online-study with 107 participants was conducted with the main goal to assess
the threat communicated by different visualizations as well as the visualizations’
popularity amongst users.
The results showed that the threat communicated by the new approaches, espe-
cially the spatio-temporal visualizations, was, in most tested scenarios, higher
than the threat communicated by the currently used Perimeter depiction and the
Ignition Marker. This difference was most prominent in a critical and dangerous
scenario, where the current visualizations made the users underestimate the

7.2. Recommendations for Further Work 65

situation.
The analysis of the popularity questions showed that the spatio-temporal ap-
proaches Danger Zone, Fire Frontline Development and Spread together with the
Street visualization were most popular and the two current visualizations were
considerably less popular.

These results revealed, that the users would like to see new visualizations in
public bushfire warn apps and websites that involve some kind of analysis
and the integration of the spatio-temporal dimension. Moreover the popularity
results and the results of the communicated threat showed, that the developed
approaches are suitable alternatives for public warn apps and websites, which
fulfills the initial goal of the thesis.
This thesis provides an overview over the new visualization techniques, their
algorithms as well as over the threat communicated by them. Developers of
bushfire warn apps and websites now have to decide, in conjunction with experts,
which level of danger should be communicated in their application by using
suitable visualizations, in order to enable an appropriate decision-making by the
users.

7.2 Recommendations for Further Work

Based on the results of this thesis, it would be interesting to investigate further
animated visualization techniques of the spatio-temporal bushfire development
and to compare them and their communicated threat with the approaches intro-
duced in this work. Besides this, another aspect that could be integrated and that
has also a spatio-temporal dimension is the development of smoke in the fires’
environment. Suitable visualizations of the smoke would certainly improve the
population’s awareness of the danger originating from a bushfire.

Moreover, some concepts introduced here could be improved. For example the
introduced Danger Zone algorithm’s extrapolation: For this, it would be interest-
ing to find out, whether there are further parameters concerning weather or fuel
available online and suitable for the integration in the extrapolation approach,
to approximate the future development of a bushfire more accurately. Similarly,
the development of a good threat-value function in collaboration with bushfire
experts would be very helpful, in order to enable algorithms using threat-value
functions, like the Street algorithm, to rate points of interest accurately.

On the application side, the next step would be to integrate the new visualizations
into public warn apps and websites, or to develop a new mobile app or website
that integrates the new visualizations developed in this thesis. Of course, the
application of the algorithms and visualizations is not limited to smartphone
apps and websites, but generally possible for all device-classes that are able to

66 Chapter 7. Conclusion and Outlook

gather information about bushfires and other parameters, for example by using
the web.
One idea would be to integrate bushfire visualizations like the Street algorithm
in mobile navigation systems, informing the driver about the current fires on
his route or in his environment. The routing algorithms could additionally be
modified using a threat value function as introduced here, to compute routes that
are "safe" and lead around the fires.

List of Algorithms 67

List of Algorithms

1 Nearest Point Algorithm . 23

2 computeNearestIndex . 25

3 Fire Frontline Algorithm . 26

4 Nearest Point Development Algorithm (static) 28

5 Nearest Point Development Algorithm (animated) 29

6 interpolateLocation . 29

7 Fire Frontline Development Algorithm (static) 31

8 Fire Frontline Development Algorithm (animated) 32

9 shootPerimeter . 34

10 Spread Algorithm . 35

11 shootPolygon . 36

12 computeIntersectionTime . 36

13 Danger Zone Algorithm - <pre-processing and initialization> . . 39

14 Danger Zone Algorithm . 40

15 Street Algorithm . 44

68 List of Algorithms

List of Tables 69

List of Tables

3.1 The Visualizations developed by Black et al. 11

3.2 Current App - Visualizations . 14

3.3 Current Website - Visualizations 15

3.4 Current Visualizations - Summary 17

4.1 Comparison of all Visualizations 20

6.1 Abbreviations for the Visualizations 58

6.2 Comparison and Ranking of the Communicated Threats 58

6.3 Comparison and Ranking of the Popularity 61

70 List of Tables

List of Figures 71

List of Figures

1.1 Bushfire Photography . 2

1.2 Screenshot CFA Fire Ready App 3

3.1 The Visualizations by Black et al. 12

3.2 NSW Fires Near Me Screenshot and TexasFires Screenshot 13

3.3 Google Crisis Map Screenshot and Queensland Rural Fire Service
Website Screenshot . 15

3.4 Scientific Visualization and FireDST Visualization 16

4.1 Fire - Geometry - Data . 20

4.2 Example - Nearest Point Visualization 23

4.3 Sketch of the Fire Frontline Algorithm 24

4.4 Example - Fire Frontline Visualization 25

4.5 Example - Nearest Point Development Visualization 29

4.6 Example - Fire Frontline Development Visualization 31

4.7 Sketch of the 2D Ray-Casting . 33

4.8 Example - Spread Visualization . 35

4.9 Example - Danger Zone Visualization 39

4.10 Sketch of the Constant Outwards Offsetting 41

4.11 Sketch of the Extrapolation . 41

4.12 Example - Street Visualization . 43

4.13 Example - Threat Value User-Marker 45

5.1 Software Architecture Pipeline . 48

5.2 Sectors in the Prototype GUI . 50

5.3 Screenshot Prototype Program . 51

6.1 The Usage of Electronic Maps . 57

6.2 The Usage of Paper-Maps . 57

6.3 Comparison of the Communicated Threat in Scenario 1 (15 km) . 59

6.4 Comparison of the Communicated Threat in Scenario 2 (6 km) . . 59

6.5 Comparison of the Communicated Threat in Scenario 3 (3 km) . . 60

72 List of Figures

6.6 The General Popularity of all Visualizations 61

6.7 The Mobile Popularity of all Visualizations 62

6.8 The Web Popularity of all Visualizations 62

Bibliography

[1] WIKIPEDIA: Bushfires in Australia — Wikipedia, The Free Encyclopedia".
http://en.wikipedia.org/w/index.php?title=Bushfires_
in_Australia&oldid=559489409. Version: 2013. – [Online; accessed
26-July-2013]

[2] WIKIPEDIA: Wildfire — Wikipedia, The Free Encyclopedia. http:
//en.wikipedia.org/w/index.php?title=Wildfire&oldid=
564150631. Version: 2013. – [Online; accessed 26-July-2013]

[3] VICTORIA WEBSITE, The S.: What Causes Bushfires on Public Land in Victoria?
http://www.dse.vic.gov.au/fire-and-other-emergencies/
fire-management/causes-of-bushfire. Version: 2013. – [Online;
accessed 26-July-2013]

[4] WIKIPEDIA: Black Saturday bushfires — Wikipedia, The Free Ency-
clopedia. http://en.wikipedia.org/w/index.php?title=Black_
Saturday_bushfires&oldid=564980254. Version: 2013. – [Online;
accessed 26-July-2013]

[5] KUNZ, Melanie ; LIENERT, Christophe ; HURNI, Lorenz: Understanding
the risk: establishing of an interactive system for the visualization and
exploration of natural hazards and associated uncertainties. In: Proceedings
of 24th International Cartographic Conference (ICC). Santiago de Chile, 2009, S.
1–11

[6] BLACK, Julian ; ARROWSMITH, Colin ; BLACK, Michael ; CARTWRIGHT,
William: Comparison of Techniques for Visualising Fire Behaviour.
In: T. GIS 11 (2007), Nr. 4, S. 621–635. http://dx.doi.org/http:
//dx.doi.org/10.1111/j.1467-9671.2007.01063.x. – DOI
http://dx.doi.org/10.1111/j.1467–9671.2007.01063.x

[7] PANG, Alex: Visualizing Uncertainty in Natural Hazards. In: Risk, Gover-
nance and Society 14 (2008), S. 261–294

[8] ANDRIENKO, Gennady L. ; ANDRIENKO, Natalia V. ; DYKES, Jason ; FAB-
RIKANT, Sara I. ; WACHOWICZ, Monica: Geovisualization of dynamics,
movement and change: key issues and developing approaches in visualiza-
tion research. In: Information Visualization 7 (2008), Nr. 3-4, S. 173–180

[9] BLOK, Connie: Monitoring change: characteristics of dynamic geo-spatial
phenomena for visual exploration. (2000), S. 16–30

73

http://en.wikipedia.org/w/index.php?title=Bushfires_in_Australia&oldid=559489409
http://en.wikipedia.org/w/index.php?title=Bushfires_in_Australia&oldid=559489409
http://en.wikipedia.org/w/index.php?title=Wildfire&oldid=564150631
http://en.wikipedia.org/w/index.php?title=Wildfire&oldid=564150631
http://en.wikipedia.org/w/index.php?title=Wildfire&oldid=564150631
http://www.dse.vic.gov.au/fire-and-other-emergencies/fire-management/causes-of-bushfire
http://www.dse.vic.gov.au/fire-and-other-emergencies/fire-management/causes-of-bushfire
http://en.wikipedia.org/w/index.php?title=Black_Saturday_bushfires&oldid=564980254
http://en.wikipedia.org/w/index.php?title=Black_Saturday_bushfires&oldid=564980254
http://dx.doi.org/http://dx.doi.org/10.1111/j.1467-9671.2007.01063.x
http://dx.doi.org/http://dx.doi.org/10.1111/j.1467-9671.2007.01063.x

[10] PETERS, Ellen ; DIECKMANN, Nathan ; DIXON, Anna ; HIBBARD, Judith H. ;
MERTZ, CK: Less is more in presenting quality information to consumers.
In: Medical Care Research and Review 64 (2007), Nr. 2, S. 169–190

[11] KUNZ, Melanie ; GRÊT-REGAMEY, Adrienne ; HURNI, Lorenz: VI-
SUALIZING NATURAL HAZARD DATA AND UNCERTAINTIES–
CUSTOMIZATION THROUGH A WEB-BASED CARTOGRAPHIC INFOR-
MATION SYSTEM. In: Proceedings of the special joint symposium of ISPRS
Techn. Commission IV & AutoCarto 2010 (2010)

[12] JIANG, Carl Y.: Modeling Bushfire Spread Based on Digital Elevation Model
and Satellite Imagery: Estimate Burning Velocity and Area. In: American
Journal of Geographic Information System 1 (2012), Nr. 3, S. 39–48

[13] WIKIPEDIA: Haversine formula — Wikipedia, The Free Encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Haversine_
formula&oldid=553768263. Version: 2013. – [Online; accessed 9-June-
2013]

[14] CATMULL, Edwin ; ROM, Raphael: A class of local interpolating splines. In:
Computer aided geometric design 74 (1974), S. 317–326

[15] GRAHAM, Ronald L.: An efficient algorith for determining the convex hull of
a finite planar set. In: Information processing letters 1 (1972), Nr. 4, S. 132–133

[16] GOLDMAN, Ronald: Graphics gems. (1990), 304–. http://dl.acm.org/
citation.cfm?id=90767.90838. ISBN 0–12–286169–5

[17] DIJKSTRA, Edsger W.: A note on two problems in connexion with graphs.
In: Numerische mathematik 1 (1959), Nr. 1, S. 269–271

[18] TOLHURST, Kevin ; SHIELDS, Brett ; CHONG, Derek: Phoenix: development
and application of a bushfire risk management tool. In: Australian Journal of
Emergency Management, The 23 (2008), Nr. 4, S. 47

74

http://en.wikipedia.org/w/index.php?title=Haversine_formula&oldid=553768263
http://en.wikipedia.org/w/index.php?title=Haversine_formula&oldid=553768263
http://dl.acm.org/citation.cfm?id=90767.90838
http://dl.acm.org/citation.cfm?id=90767.90838

	 Motivation
	Bushfires
	Bushfire-Warn-Applications and Websites

	 Goals
	Concepts
	Implementation
	Evaluation

	 Related Work
	Important Aspects in the Related Literature
	Expert - Visualizations by Black et al.
	Current Bushfire Visualizations
	Public Visualizations
	Expert Visualizations
	Conclusion

	 Concepts - The Visualization Algorithms
	Overview
	Nearest Point Algorithm
	Motivation
	Algorithm
	Pseudocode
	Comments

	Fire Frontline Algorithm
	Motivation
	Algorithm
	Pseudocode
	Comments

	Nearest Point Development Algorithm
	Motivation
	Algorithm
	Pseudocode
	Comments

	Fire Frontline Development Algorithm
	Motivation
	Algorithm
	Pseudocode
	Comments

	Spread Algorithm
	Motivation
	Algorithm
	Pseudocode
	Comments

	Danger Zone Algorithm
	Motivation
	Algorithm
	Pseudocode
	Comments

	Street Algorithm
	Motivation
	Algorithm
	Pseudocode
	Comments

	Conclusion

	 Implementation
	Overview
	Software Architecture
	Features and Graphical User Interface

	 Evaluation
	Overview
	Study Structure
	Study Results

	 Conclusion and Outlook
	Conclusion
	Recommendations for Further Work

	List of Algorithms
	List of Tables
	List of Figures
	Bibliography

